1
|
Ji X, Liu S, Li S, Li X, Luo A, Zhang X, Zhao Y. GABA in early brain development: A dual role review. Int J Dev Neurosci 2024; 84:843-856. [PMID: 39503050 DOI: 10.1002/jdn.10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
This comprehensive review examines the multifaceted roles of gamma-aminobutyric acid (GABA) in early brain development. GABA, traditionally recognized for its inhibitory functions in the mature brain, also exhibits excitatory effects during early neural development. This article explores the mechanisms behind GABA's dual roles, detailing its impact on the properties of the immature brain, the mechanisms of GABA-mediated excitation, the role of GABA-mediated presynaptic inhibition, the trophic actions of GABA during early development, GABA regulation of neurite growth and GABA-mediated cell differentiation in the immature brain. Emphasizing recent research findings, the review highlights the significance of GABAergic signalling in shaping the developing brain and its potential implications for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzhen Liu
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Silva-Batista C, Lira J, Coelho DB, de Lima-Pardini AC, Nucci MP, Mattos ECT, Magalhaes FH, Barbosa ER, Teixeira LA, Amaro Junior E, Ugrinowitsch C, Horak FB. Mesencephalic Locomotor Region and Presynaptic Inhibition during Anticipatory Postural Adjustments in People with Parkinson's Disease. Brain Sci 2024; 14:178. [PMID: 38391752 PMCID: PMC10887111 DOI: 10.3390/brainsci14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Individuals with Parkinson's disease (PD) and freezing of gait (FOG) have a loss of presynaptic inhibition (PSI) during anticipatory postural adjustments (APAs) for step initiation. The mesencephalic locomotor region (MLR) has connections to the reticulospinal tract that mediates inhibitory interneurons responsible for modulating PSI and APAs. Here, we hypothesized that MLR activity during step initiation would explain the loss of PSI during APAs for step initiation in FOG (freezers). Freezers (n = 34) were assessed in the ON-medication state. We assessed the beta of blood oxygenation level-dependent signal change of areas known to initiate and pace gait (e.g., MLR) during a functional magnetic resonance imaging protocol of an APA task. In addition, we assessed the PSI of the soleus muscle during APA for step initiation, and clinical (e.g., disease duration) and behavioral (e.g., FOG severity and APA amplitude for step initiation) variables. A linear multiple regression model showed that MLR activity (R2 = 0.32, p = 0.0006) and APA amplitude (R2 = 0.13, p = 0.0097) explained together 45% of the loss of PSI during step initiation in freezers. Decreased MLR activity during a simulated APA task is related to a higher loss of PSI during APA for step initiation. Deficits in central and spinal inhibitions during APA may be related to FOG pathophysiology.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jumes Lira
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo 09210-170, Brazil
| | | | | | | | | | - Egberto Reis Barbosa
- Movement Disorders Clinic, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil
| | - Luis Augusto Teixeira
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Edson Amaro Junior
- Department of Radiology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Theodosiadou A, Henry M, Duchateau J, Baudry S. Revisiting the use of Hoffmann reflex in motor control research on humans. Eur J Appl Physiol 2023; 123:695-710. [PMID: 36571622 DOI: 10.1007/s00421-022-05119-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Research in movement science aims at unravelling mechanisms and designing methods for restoring and maximizing human functional capacity, and many techniques provide access to neural adjustments (acute changes) or long-term adaptations (chronic changes) underlying changes in movement capabilities. First described by Paul Hoffmann over a century ago, when an electrical stimulus is applied to a peripheral nerve, this causes action potentials in afferent axons, primarily the Ia afferents of the muscle spindles, which recruit homonymous motor neurons, thereby causing an electromyographic response known as the Hoffmann (H) reflex. This technique is a valuable tool in the study of the neuromuscular function in humans and has provided relevant information in the neural control of movement. The large use of the H reflex in motor control research on humans relies in part to its relative simplicity. However, such simplicity masks subtleties that require rigorous experimental protocols and careful data interpretation. After highlighting basic properties and methodological aspects that should be considered for the correct use of the H-reflex technique, this brief narrative review discusses the purpose of the H reflex and emphasizes its use as a tool to assess the effectiveness of Ia afferents in discharging motor neurones. The review also aims to reconsider the link between H-reflex modulation and Ia presynaptic inhibition, the use of the H-reflex technique in motor control studies, and the effects of ageing. These aspects are summarized as recommendations for the use of the H reflex in motor control research on humans.
Collapse
Affiliation(s)
- Anastasia Theodosiadou
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Mélanie Henry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium.
| |
Collapse
|
4
|
Lira JLO, Ugrinowitsch C, Coelho DB, Teixeira LA, de Lima-Pardini AC, Magalhães FH, Barbosa ER, Horak FB, Silva-Batista C. Reply from Jumes Leopoldino Oliveira Lira, Carlos Ugrinowitsch, Daniel Boari Coelho, Luis Augusto Teixeira, Andrea Cristina de Lima-Pardini, Fernando Henrique Magalhães, Egberto Reis Barbosa, Fay B. Horak, and Carla Silva-Batista. J Physiol 2022; 600:421-422. [PMID: 34859439 PMCID: PMC8785249 DOI: 10.1113/jp282591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
| | - Carlos Ugrinowitsch
- Laboratory of Strength Training, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, SP, Brazil,Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | | | - Fernando Henrique Magalhães
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Clinic, Department of Neurology, School of Medicine of the University of Sao Paulo, SP, Brazil
| | - Fay B. Horak
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
| |
Collapse
|
5
|
Rowland RS, Jenkinson N, Chiou SY. Age-Related Differences in Corticospinal Excitability and Anticipatory Postural Adjustments of the Trunk. Front Aging Neurosci 2021; 13:718784. [PMID: 34483887 PMCID: PMC8416077 DOI: 10.3389/fnagi.2021.718784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anticipatory postural adjustments (APAs) are a feedforward mechanism for the maintenance of postural stability and are delayed in old adults. We previously showed in young adults that APAs of the trunk induced by a fast shoulder movement were mediated, at least in part, by a cortical mechanism. However, it remains unclear the relationship between delayed APAs and motor cortical excitability in ageing. Using transcranial magnetic stimulation we examined motor evoked potentials (MEPs) of the erector spinae (ES) muscles in healthy young and old adults prior to a fast shoulder flexion task. A recognition reaction time (RRT) paradigm was used where participants responded to a visual stimulus by flexing their shoulders bilaterally as fast as possible. The activity of bilateral anterior deltoid (AD) and ES muscles was recorded using electromyography (EMG). The onset of AD and ES EMG was measured to represent RRT and APAs, respectively. We found increases in amplitudes of ES MEPs at 40 ms than 50 ms prior to the EMG onset of the AD in both groups. The amplitude of ES MEPs at 40 ms prior to the onset of AD EMG correlated with the onset of ES activity counterbalancing the perturbation induced by the shoulder task in the elderly participants only. Our findings suggest that timing of increasing corticospinal excitability prior to a self-paced perturbation becomes more relevant with ageing in modulating postural control of the trunk.
Collapse
Affiliation(s)
- Rebecca S Rowland
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ned Jenkinson
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Medical Research Council 'Versus' Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Shin-Yi Chiou
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Medical Research Council 'Versus' Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|