1
|
Klopack ET, Farina MP, Thyagarajan B, Faul JD, Crimmins EM. How much can biomarkers explain sociodemographic inequalities in cognitive dysfunction and cognitive impairment? Results from a machine learning model in the Health and Retirement Study. J Alzheimers Dis 2025:13872877251338063. [PMID: 40325957 DOI: 10.1177/13872877251338063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundBiomarkers may be pathways by which social adversity affects cognitive aging and Alzheimer's disease and related dementias (ADRD) risk.ObjectiveHow much variance in cognitive dysfunction and cognitive impairment onset do blood-based and physiological biomarkers provide above and beyond easily attainable sociodemographic variables, and how much can biomarkers explain differences in cognitive functioning and ADRD by sociodemographic variables?MethodsWe utilize machine learning to generate measures of predicted cognitive dysfunction and cognitive impairment incidence based on 91 biomarkers, identify the relative importance of each biomarker, and examine how much these biomarkers mediate sociodemographic differences.ResultsMarkers related to cellular aging, neurodegeneration, diet and nutrition, immune functioning, and lung function were identified as important. Biomarkers mediated 47.2-77.3% of the variance associated with age, 22.7-35.2% of racial/ethnic differences in cognitive dysfunction, and 12.5-17.6% of educational differences.ConclusionsBiomarkers provide the potential to understand pathways linking sociodemographic characteristics to cognitive functioning and health. Future research should consider additional biomarkers and evaluate the specific systems that put people at risk for cognitive impairment.
Collapse
Affiliation(s)
- Eric T Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Mateo P Farina
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, TX, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jessica D Faul
- Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Bundil I, Baltruschat S, Zhang J. Characterising and differentiating cognitive and motor speed in older adults: structural equation modelling on a UK longitudinal birth cohort. BMJ Open 2024; 14:e083968. [PMID: 39160108 PMCID: PMC11337668 DOI: 10.1136/bmjopen-2024-083968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVES Information processing speed (IPS) has been proposed to be a key component in healthy ageing and cognitive functioning. Yet, current studies lack a consistent definition and specific influential characteristics. This study aimed to investigate IPS as a multifaceted concept by differentiating cognitive and motor IPS. DESIGN, SETTING AND PARTICIPANTS A retrospective data analysis using data from the Medical Research Council National Survey of Health and Development (a population-based cohort of UK adults born in 1946) at childhood (ages 8, 11 and 15) and adulthood (ages 60-64 and 68-70). Using structural equation modelling, we constructed two models of IPS with 2124 and 1776 participants, respectively. OUTCOME MEASURES Measures of interest included IPS (ie, letter cancellation, simple and choice reaction time), intelligence (ie, childhood intelligence and National Adult Reading Test), verbal memory, socioeconomic status (SES) and cognitive functions measured by the Addenbrooke's Cognitive Examination III, as well as a variety of health indexes. RESULTS We found distinct predictors for cognitive and motor IPS and how they relate to other cognitive functions in old age. In our first model, SES and antipsychotic medication usage emerged as significant predictors for cognitive IPS, intelligence and smoking as predictors for motor IPS while both share sex, memory and antiepileptic medication usage as common predictors. Notably, all differences between both IPS types ran in the same direction except for sex differences, with women performing better than men in cognitive IPS and vice versa in motor IPS. The second model showed that both IPS measures, as well as intelligence, memory, antipsychotic and sedative medication usage, explain cognitive functions later in life. CONCLUSION Taken together, these results shed further light on IPS as a whole by showing there are distinct types and that these measures directly relate to other cognitive functions.
Collapse
Affiliation(s)
- Indra Bundil
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Jiaxiang Zhang
- School of Psychology, Cardiff University, Cardiff, UK
- Department of Computer Science, Swansea University, Swansea, UK
| |
Collapse
|
4
|
Chen J, Moubadder L, Clausing ES, Kezios KL, Conneely KN, Hüls A, Baccarelli A, Factor-Litvak P, Cirrillo P, Shelton RC, Link BG, Suglia SF. Associations of childhood, adolescence, and midlife cognitive function with DNA methylation age acceleration in midlife. Aging (Albany NY) 2024; 16:9350-9368. [PMID: 38874516 PMCID: PMC11210249 DOI: 10.18632/aging.205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Prior studies showed increased age acceleration (AgeAccel) is associated with worse cognitive function among old adults. We examine the associations of childhood, adolescence and midlife cognition with AgeAccel based on DNA methylation (DNAm) in midlife. Data are from 359 participants who had cognition measured in childhood and adolescence in the Child Health and Development study, and had cognition, blood based DNAm measured during midlife in the Disparities study. Childhood cognition was measured by Raven's Progressive Matrices and Peabody Picture Vocabulary Test (PPVT). Adolescent cognition was measured only by PPVT. Midlife cognition included Wechsler Test of Adult Reading (WTAR), Verbal Fluency (VF), Digit Symbol (DS). AgeAccel measures including Horvath, Hannum, PhenoAge, GrimAge and DunedinPACE were calculated from DNAm. Linear regressions adjusted for potential confounders were utilized to examine the association between each cognitive measure in relation to each AgeAccel. There are no significant associations between childhood cognition and midlife AgeAccel. A 1-unit increase in adolescent PPVT, which measures crystalized intelligence, is associated with 0.048-year decrease of aging measured by GrimAge and this association is attenuated after adjustment for adult socioeconomic status. Midlife crystalized intelligence measure WTAR is negatively associated with PhenoAge and DunedinPACE, and midlife fluid intelligence measure (DS) is negatively associated with GrimAge, PhenoAge and DunedinPACE. AgeAccel is not associated with VF in midlife. In conclusion, our study showed the potential role of cognitive functions at younger ages in the process of biological aging. We also showed a potential relationship of both crystalized and fluid intelligence with aging acceleration.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth S. Clausing
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- School of Global Integrative Studies, University of Nebraska, Lincoln, NE 68508, USA
| | - Katrina L. Kezios
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Piera Cirrillo
- Child Health and Development Studies, Public Health Institute, Washington, DC 20024, USA
| | - Rachel C. Shelton
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Bruce G. Link
- Department of Sociology, University of California Riverside, Riverside, CA 92507, USA
| | - Shakira F. Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Thomas A, Ryan CP, Caspi A, Liu Z, Moffitt TE, Sugden K, Zhou J, Belsky DW, Gu Y. Diet, Pace of Biological Aging, and Risk of Dementia in the Framingham Heart Study. Ann Neurol 2024; 95:1069-1079. [PMID: 38407506 PMCID: PMC11102315 DOI: 10.1002/ana.26900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE People who eat healthier diets are less likely to develop dementia, but the biological mechanism of this protection is not well understood. We tested the hypothesis that healthy diet protects against dementia because it slows the pace of biological aging. METHODS We analyzed Framingham Offspring Cohort data. We included participants ≥60 years-old, free of dementia and having dietary, epigenetic, and follow-up data. We assessed healthy diet as long-term adherence to the Mediterranean-Dash Intervention for Neurodegenerative Delay diet (MIND, over 4 visits spanning 1991-2008). We measured the pace of aging from blood DNA methylation data collected in 2005-2008 using the DunedinPACE epigenetic clock. Incident dementia and mortality were defined using study records compiled from 2005 to 2008 visit through 2018. RESULTS Of n = 1,644 included participants (mean age 69.6, 54% female), n = 140 developed dementia and n = 471 died over 14 years of follow-up. Greater MIND score was associated with slower DunedinPACE and reduced risks for dementia and mortality. Slower DunedinPACE was associated with reduced risks for dementia and mortality. In mediation analysis, slower DunedinPACE accounted for 27% of the diet-dementia association and 57% of the diet-mortality association. INTERPRETATION Findings suggest that slower pace of aging mediates part of the relationship of healthy diet with reduced dementia risk. Monitoring pace of aging may inform dementia prevention. However, a large fraction of the diet-dementia association remains unexplained and may reflect direct connections between diet and brain aging that do not overlap other organ systems. Investigation of brain-specific mechanisms in well-designed mediation studies is warranted. ANN NEUROL 2024;95:1069-1079.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Calen P. Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Jiayi Zhou
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Daniel W. Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
7
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
8
|
Thomas A, Ryan CP, Caspi A, Moffitt TE, Sugden K, Zhou J, Belsky DW, Gu Y. Diet, pace of biological aging, and risk of dementia in the Framingham Heart Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290474. [PMID: 37398353 PMCID: PMC10312831 DOI: 10.1101/2023.05.24.23290474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
INTRODUCTION We tested the hypothesis that healthy diet protects against dementia because it slows the pace of biological aging. METHODS We analyzed Framingham Offspring Cohort data (≥60y). We measured healthy diet using the Dietary Guideline for Americans (DGA, 3 visits 1991-2008), pace of aging using the DunedinPACE epigenetic clock (2005-2008), and incident dementia and mortality using records (compiled 2005-2018). RESULTS Of n=1,525 included participants (mean age 69.7, 54% female), n=129 developed dementia and n=432 died over follow-up. Greater DGA adherence was associated with slower DunedinPACE and reduced risks for dementia and mortality. Slower DunedinPACE was associated with reduced risks for dementia and mortality. Slower DunedinPACE accounted for 15% of the DGA association with dementia and 39% of the DGA association with mortality. DISCUSSION Findings suggest that slower pace of aging mediates part of the relationship of healthy diet with reduced dementia risk. Monitoring pace of aging may inform dementia prevention.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Calen P Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jiayi Zhou
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Daniel W. Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
O'Shea DM, Alaimo H, Davis JD, Galvin JE, Tremont G. A comparison of cognitive performances based on differing rates of DNA methylation GrimAge acceleration among older men and women. Neurobiol Aging 2023; 123:83-91. [PMID: 36641830 DOI: 10.1016/j.neurobiolaging.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Cognitive heterogeneity increases with age rendering sex differences difficult to identify. Given established sex differences in biological aging, we examined whether comparisons of men and women on neuropsychological test performances differed as a function of age rate. Data were obtained from 1921 adults enrolled in the 2016 wave of the Health and Retirement Study. The residual from regressing the DNA methylation GrimAge clock on chronological age was used as the measure of aging rate. Slow and fast age rates were predefined as 1 standard deviation below or above the sex-specific mean rates, respectively. ANCOVAs were used to test group differences in test performances. Pairwise comparisons revealed that slow aging men outperformed fast aging women (and vice versa) on measures of executive function/speed, visual memory and semantic fluency; however, when groups were matched by aging rates, no significant differences remained. In contrast, women, regardless of their aging rates, education or depressive symptoms maintained their advantage on verbal learning and memory. Implications for research on sex differences in cognitive aging are discussed.
Collapse
Affiliation(s)
- Deirdre M O'Shea
- Department of Psychiatry & Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA; Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA.
| | | | - Jennifer D Davis
- Department of Psychiatry & Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Geoffrey Tremont
- Department of Psychiatry & Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
10
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|