1
|
El Assar M, Rodríguez-Sánchez I, Álvarez-Bustos A, Rodríguez-Mañas L. Biomarkers of frailty. Mol Aspects Med 2024; 97:101271. [PMID: 38631189 DOI: 10.1016/j.mam.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Several biomarkers have been proposed to identify frailty, a multisystemic age-related syndrome. However, the complex pathophysiology and the absence of a consensus on a comprehensive and universal definition make it challenging to pinpoint a singular biomarker or set of biomarkers that conclusively characterize frailty. This review delves into the main laboratory biomarkers, placing special emphasis on those associated with various pathways closely tied to the frailty condition, such as inflammation, oxidative stress, mitochondrial dysfunction, metabolic and endocrine alterations and microRNA. Additionally, we provide a summary of different clinical biomarkers encompassing different tools that have been proposed to assess frailty. We further address various imaging biomarkers such as Dual Energy X-ray Absorptiometry, Bioelectrical Impedance analysis, Computed Tomography and Magnetic Resonance Imaging, Ultrasound and D3 Creatine dilution. Intervention to treat frailty, including non-pharmacological ones, especially those involving physical exercise and nutrition, and pharmacological interventions, that include those targeting specific mechanisms such as myostatin inhibitors, insulin sensitizer metformin and with special relevance for hormonal treatments are mentioned. We further address the levels of different biomarkers in monitoring the potential positive effects of some of these interventions. Despite the availability of numerous biomarkers, their performance and usefulness in the clinical arena are far from being satisfactory. Considering the multicausality of frailty, there is an increasing need to assess the role of sets of biomarkers and the combination between laboratory, clinical and image biomarkers, in terms of sensitivity, specificity and predictive values for the diagnosis and prognosis of the different outcomes of frailty to improve detection and monitoring of older people with frailty or at risk of developing it, being this a need in the everyday clinical practice.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain.
| |
Collapse
|
2
|
Ardinata D, Sari Harahap N, Lubis NDA, Nasution TA. Exploring the moderating effects of SIRT1 and gene polymorphisms rs7895833 on the relationship between hemoglobin levels and physical frailty in elderly adults with comorbid chronic diseases: A moderated mediation analysis. F1000Res 2024; 12:510. [PMID: 38706642 PMCID: PMC11066533 DOI: 10.12688/f1000research.133517.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/07/2024] Open
Abstract
Background Relationship age, hemoglobin, and physical frailty have all been investigated in older people with more than one chronic disease. There has been little analysis of the relationship between hemoglobin, age, physical frailty, plasma levels of Sirtuin1 (SIRT1), and the gene polymorphism (SNP) rs7895833 A>G. The goal of this study was to find out how SIRT1 level, SNP rs7895833, hemoglobin, age, and physical frailty (frail score) are related in older Indonesian adults with comorbid chronic diseases. Methods This was an observational study. Demographic and clinical data were retrieved from the electronic health records of Universitas Sumatera Utara Hospital, Medan, Indonesia. Physical frailty, SIRT1 level, and SNP rs7895833 were measured using an appropriate and valid method. Purposive sampling was used to determine the eligibility of 132 elderly adults from November 2022 to February 2023. Results The indirect effect of hemoglobin on the frail score (FS) through age was negative and significant, according to a conditional mediation analysis (β=-0.0731; p=0.023). Meanwhile, the direct effect of hemoglobin on the FS was negative and not significant (β=0.1632; p=0.052). According to the conditional moderated mediation analysis, the size of the direct effect of age on FS was increased by genotype AG-GG and SIRT1 level (β low=0.2647; p=0.002, β middle=0.2956; p<0.001, and β high=0.319; p<0.001). The size of the conditional indirect effect of Hemoglobin on FS through age was negative and significantly increased by SNP genotype AG-GG and SIRT1 level (β low=-0.0647; p=0.032, β middle=-0.0723; p=0.024, and β high=-0.078; p=0.02). Conclusions Higher plasma levels of SIRT1 and the SNP genotype AG-GG may both contribute to physical frailty in the elderly population. Hemoglobin levels in the blood fall with age, which can negatively impact older persons who already have chronic diseases. However, the interactions between these factors are intricate, requiring more study to completely understand the processes underlying development.
Collapse
Affiliation(s)
- Dedi Ardinata
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Novita Sari Harahap
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Medan, Medan, North Sumatra, Indonesia
| | - Nenni Dwi Aprianti Lubis
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Tetty Aman Nasution
- Department of Microbiology, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| |
Collapse
|
3
|
Mehramiz M, Porter T, O’Brien EK, Rainey-Smith SR, Laws SM. A Potential Role for Sirtuin-1 in Alzheimer's Disease: Reviewing the Biological and Environmental Evidence. J Alzheimers Dis Rep 2023; 7:823-843. [PMID: 37662612 PMCID: PMC10473168 DOI: 10.3233/adr-220088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-β and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Eleanor K. O’Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
4
|
Nasiri A, Hosseini SM, Rashidi M, Mozafari H. Association between The SIRT1 and SIRT3 Levels and Gene Polymorphisms with Infertility in War Zones of Kermanshah Province, Iran: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:120-126. [PMID: 36906829 PMCID: PMC10009506 DOI: 10.22074/ijfs.2022.553494.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 03/13/2023]
Abstract
OBJECTIVE War toxin, mustard gas, alkylating agent results in male infertility via inducing reactive oxygen species (ROS) production and DNA mutagenesis. SIRT1 and SIRT3 are multifunctional enzymes that involve in the DNA repair, oxidative stress responses. This study aim is to assess the correlation between serum levels of SIRT1, SIRT3 and both rs3758391T>C and rs185277566C>G gene polymorphisms with infertility in the war zones of Kermanshah province, Iran. MATERIALS AND METHODS In this case-control study based on the semen analysis, samples were divided into two groups infertile (n=100) and fertile (n=100). High-performance liquid chromatography (HPLC) method was used to determine the malondialdehyde level, and also a sperm chromatin dispersion (SCD) test was used to evaluate the DNA fragmentation rate. Using the colorimetric assays, superoxide dismutase (SOD) activity was measured. SIRT1 and SIRT3 protein levels were determined by using ELISA. The genetic variants of SIRT1 rs3758391T>C, and SIRT3 rs185277566C>G, were detected by polymerase chain reaction-restriction fragment length (PCR-RFLP) technique. RESULTS Malondialdehyde (MDA) level and the percentage of DNA fragmentation were higher in infertile samples, but serum levels of SIRT1 and SIRT3, and SOD activity was lower in infertile compared to fertile samples (P<0.001). The TC+CC genotypes and the C allele from SIRT1 rs3758391T>C polymorphism, and CG+GG genotypes and the G allele from SIRT3 rs185277566C>G polymorphism could increase risk of infertility (P<0.05). CONCLUSION The results of this study suggest that war toxins through the impact on genotypes, decreasing levels of SIRT1 and SIRT3 and increasing levels of oxidative stress, lead to defects in the concentration, motility and morphology of sperms and thus, infertility in men.
Collapse
Affiliation(s)
- Abolfazl Nasiri
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Mozafari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Anwar M, Pradhan R, Dey S, Kumar R. The Role of Sirtuins in Sarcopenia and Frailty. Aging Dis 2023; 14:25-32. [PMID: 36818553 PMCID: PMC9937701 DOI: 10.14336/ad.2022.0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
The population of older individuals is increasing rapidly, but only a small fraction among them is able to experiences a healthy life. Due to lack of physical exercise and oxidative stress, aging leads to sarcopenia and finally end up with frailty. Sarcopenia is a component of the frailty and described as age related degenerative changes in the skeletal muscle mass, strength and quality. Though the loss of muscle strength and mass gradually seem inevitable during aging, it can be partially prevented or overcome by a deeper insight into the pathogenesis. Sirtuin protein leads to longevity across different organisms ranging from worms to mammals. Expression of sirtuin protein increases during physical exercise and thus strengthens muscle mass. Satellite cells leads to muscle repair in a SIRT1 dependent manner. In addition, SIRT1 improves insulin sensitivity and induces autophagy in the aged mice. The current paper discussed the putative role of sirtuins in sarcopenia and frailty. Moreover, it highlighted the pathways by which sirtuins can inhibit ROS production, inflammation and mitochondrial dysfunctions and therefore confers a protective role against frailty and sarcopenia. The critical role of sirtuins in the sarcopenia and frailty pathogenesis can eventually fuel the development of novel interventions by targeting sirtuins.
Collapse
Affiliation(s)
- Masroor Anwar
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India,Correspondence should be addressed to: Dr. Rahul Kumar, GITAM Institiute of Sciences, GITAM (Deemed to be) University, Gandhi Nagar, Rushikonda, Andhra Pradesh-53004, India.; Dr. Sharmitha Dey, All India Institute of Medical Sciences, New Delhi-110059, India.
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India,Correspondence should be addressed to: Dr. Rahul Kumar, GITAM Institiute of Sciences, GITAM (Deemed to be) University, Gandhi Nagar, Rushikonda, Andhra Pradesh-53004, India.; Dr. Sharmitha Dey, All India Institute of Medical Sciences, New Delhi-110059, India.
| |
Collapse
|
6
|
Gonçalves RSDSA, Maciel ÁCC, Rolland Y, Vellas B, de Souto Barreto P. Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Res Rev 2022; 81:101737. [PMID: 36162706 DOI: 10.1016/j.arr.2022.101737] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
Cellular and molecular aging biomarkers might contribute to identify at-risk individuals for frailty before overt clinical manifestations appear. Although studies on the associations of aging biomarkers and frailty exist, no investigation has gathered this information using a structured framework for identifying aging biomarkers; as a result, the evidence on frailty and aging biomarkers is diffuse and incomplete. Therefore, this narrative review aimed to gather information on the associations of the hallmarks of aging and frailty under the perspective of geroscience. The literature on human studies on this topic is sparse and mainly composed of cross-sectional investigations performed in small study samples. The main putative aging biomarkers associated to frailty were: mitochondrial DNA copy number (genomic instability and mitochondrial dysfunction), telomere length (telomere attrition), global DNA methylation (epigenetic alterations), Hsp70 and Hsp72 (loss of proteostasis), IGF-1 and SIRT1 (deregulated nutrient-sensing), GDF-15 (mitochondrial dysfunction, cellular senescence and altered intercellular communication), CD4 + and CD8 + cell percentages (cellular senescence), circulating osteogenic progenitor (COP) cells (stem cell exhaustion), and IL-6, CRP and TNF-alpha (altered intercellular communication). IGF-1, SIRT1, GDF-15, IL-6, CRP and TNF-alpha presented more evidence among these biomarkers, highlighting the importance of inflammation and nutrient sensing on frailty. Further longitudinal studies investigating biomarkers across the hallmarks of aging would provide valuable information on this topic.
Collapse
Affiliation(s)
| | | | - Yves Rolland
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
7
|
Kaikaryte K, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Mockute R, Cebatoriene D, Zemaitiene R, Balciuniene VJ, Liutkeviciene R. SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12050753. [PMID: 35629418 PMCID: PMC9148058 DOI: 10.3390/life12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Correspondence: ; Tel.: +370-6857-5999
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Ruta Mockute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Vilma Jurate Balciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| |
Collapse
|
8
|
Dardano A, Lucchesi D, Garofolo M, Gualdani E, Falcetta P, Sancho Bornez V, Francesconi P, Del Prato S, Penno G. SIRT1 rs7896005 polymorphism affects major vascular outcomes, not all-cause mortality, in Caucasians with type 2 diabetes: A 13-year observational study. Diabetes Metab Res Rev 2022; 38:e3523. [PMID: 35092334 PMCID: PMC9286639 DOI: 10.1002/dmrr.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022]
Abstract
AIMS SIRT1 exerts effects on ageing and lifespan, as well cardiovascular (CV) disease risk. SIRT1 gene is very polymorph with a few tagging single nucleotide polymorphisms (SNPs) so far identified. Some SNPs, including rs7896005, were associated with type 2 diabetes (T2DM). We aimed to ascertain whether this SNP may be associated with CV disease at baseline as well with these same outcomes and all-cause mortality over a 13-year follow-up. MATERIALS AND METHODS Genotypes of SIRT1 gene were determined using TaqMan SNP assay. RESULTS Out of 905 T2DM, 9.1% had the AA genotype, 43.2% the AG, and 47.7% the GG. Hardy-Weinberg Equilibrium was met (minor allele frequency 0.306; p = 0.8899). At baseline, there was no difference across genotypes for sex, age, diabetes duration, CV risk factors, treatments, and microangiopathy. Major CV outcomes, myocardial infarction (MI), any coronary heart disease (CHD), and peripheral artery disease (PAD) were more frequent in GG than in AA/AG (p from 0.013 to 0.027), with no association with cerebrovascular events. By fully adjusted regression, GG remained independently related to major CV outcomes, MI, CHD, and PAD. Over follow-up, we recorded 258 major CV events (28.5%; AA/AG 25.2%, GG 32.2%; p = 0.014) with an adjusted hazard ratio (HR) of GG versus AA/AG of 1.296 (95% CI 1.007-1.668, p = 0.044); 169 coronary events (18.7%; AA/AG 15.4%, GG 22.2%; p = 0.006) with HR 1.522 (1.113-2.080, p = 0.008); 79 (8.7%) hospitalisation for heart failure (AA/AG 7.0%, GG 10.6%; p = 0.045) and HR 1.457 (0.919-2.309, p = 0.109); 36 PAD (4.0%; AA/AG 2.3%, GG 5.8%; p = 0.007) with HR 2.225 (1.057-4.684, p = 0.035). No association was found with cerebrovascular events, end stage renal disease, and all-cause mortality. CONCLUSIONS The rs7896005 SNP of SIRT1 might play a role in cardiovascular disease, mainly CHD risk in T2DM. Results call for larger association studies as well as studies to ascertain mechanisms by which this variant confers increased risk.
Collapse
Affiliation(s)
- Angela Dardano
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Daniela Lucchesi
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Monia Garofolo
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Elisa Gualdani
- Epidemiology UnitRegional Health Agency (ARS) of TuscanyFlorenceItaly
| | - Pierpaolo Falcetta
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Veronica Sancho Bornez
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Paolo Francesconi
- Epidemiology UnitRegional Health Agency (ARS) of TuscanyFlorenceItaly
| | - Stefano Del Prato
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Giuseppe Penno
- Section of Diabetes and Metabolic DiseaseDepartment of Clinical and Experimental MedicineUniversity of Pisa and Azienda Ospedaliero‐Universitaria PisanaPisaItaly
| |
Collapse
|
9
|
Vaiciulis P, Liutkeviciene R, Liutkevicius V, Vilkeviciute A, Gedvilaite G, Uloza V. Association of SIRT1 single gene nucleotide polymorphisms and serum SIRT1 levels with laryngeal squamous cell carcinoma patient survival rate. Cancer Biomark 2022; 34:175-188. [PMID: 34719479 PMCID: PMC9198736 DOI: 10.3233/cbm-210264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND SIRT1 is a multifunctional protein, possibly essential in tumorigenesis pathways, which can act both as a tumor promoter and tumor suppressor depending on the oncogenes, specific to particular tumors. Pathogenesis of laryngeal cancer is multifactorial and the association of SIRT1 expression with the clinical characteristics and prognosis of LSCC has not been fully identified. OBJECTIVES The study aimed to evaluate associations between single gene nucleotide polymorphisms (SNPs) of SIRT1 (rs3818292, rs3758391, and rs7895833), serum SIRT1 levels, and 5-year survival rate in patients with laryngeal squamous cell carcinoma (LSCC). METHODS The study involved 302 patients with LSCC and 409 healthy control subjects. The genotyping of SNPs was performed using RT-PCR, and serum SIRT1 levels were determined by the ELISA method. RESULTS Our study found significant differences in genotype distributions of SIRT1 rs3758391 polymorphisms between the study groups. SIRT1 rs3758391 T/T genotype was associated with the increased LSCC development odds (OR = 1.960 95% CI = 1.028-3.737; p= 0.041). Carriers of SIRT1 rs3758391 T/T genotype had statistically significantly increased odds of LSCC development into advanced stages under the codominant and recessive genetic models (OR = 2.387 95% CI = 1.091-5.222; p= 0.029 and OR = 2.287 95% CI = 1.070-4.888; p= 0.033, respectively). There were no statistically significant differences in serum SIRT1 levels between the LSCC and control groups. However, LSCC patients with SIRT1 rs3818292 AG genotype demonstrated a tendency to significantly lower SIRT1 serum levels than controls (p= 0.034). No statistically significant associations between SIRT1 (rs3818292, rs3758391, and rs7895833) SNPs and the 5-year survival rate of LSCC patients were found. CONCLUSION The present study indicated a statistically significant association between the SIRT1 rs3758391 T/T genotype and increased LSCC development odds. LSCC patients with SIRT1 rs3818292 AG genotype showed a tendency to manifest with lower SIRT1 serum levels. No associations between SIRT1 SNPs and the 5-year survival rate of LSCC patients were detected.
Collapse
Affiliation(s)
- Paulius Vaiciulis
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
10
|
Liu P, Li Y, Ma L. Caloric Restriction May Help Delay the Onset of Frailty and Support Frailty Management. Front Nutr 2021; 8:731356. [PMID: 34552957 PMCID: PMC8450361 DOI: 10.3389/fnut.2021.731356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Frailty is an age-related clinical syndrome that may increase the risk of falls, disability, hospitalization, and death in older adults. Delaying the progression of frailty helps improve the quality of life in older adults. Caloric restriction (CR) may extend lifespan and reduce the risk of age-related diseases. However, few studies have explored the relationship between CR and frailty. In this review, we focused on the impact of CR on frailty and aimed to identify potential associated mechanisms. Although CR may help prevent frailty, further studies are required to determine the underlying mechanisms and specific CR regimens suitable for use in humans.
Collapse
Affiliation(s)
- Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Medicine, Beijing, China
| |
Collapse
|
11
|
Zhang S, Zhao J, Ma W. Circ-Sirt1 inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes. Autoimmunity 2021; 54:514-525. [PMID: 34431434 DOI: 10.1080/08916934.2021.1969550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease related to abnormal activation of fibroblast-like synovium cells (FLS) with apoptosis, inflammation, and oxidative damage. Circular RNA Sirt1 (circ-Sirt1) is an abundant circRNA, exerts the function in inhibiting inflammation. However, little is known about the roles of circ-Sirt1, if any, in RA. The present study aimed to investigate the biological roles and mechanism of circ-Sirt1 on cell inflammation in RA-FLS MH7A cell line. This study showed circ-Sirt1 inhibited the proliferation and induced apoptosis of MH7A cells. Overexpression of circ-Sirt1 decreased of the levels of interleukin (IL)-1β and IL-6, tumour necrosis factor (TNF)-α, and matrix matalloproteinases (MMP)-1 and MMP-3 in MH7A cells. In addition, overexpression of circ-Sirt1 increased the expression of Sirt1, Nrf2, HO-1, IκBα, GCLC and GCLM, and decreased the ratio of acetylated NF-κB to normal NF-κB, and the expression of AP-1, COX-2 and HMGB1. Moreover, the expression of Keap1 and the ratio of acetylated NF-κB to normal NF-κB were partially increased and the Nrf2 and Sirt1 were partially reduced by siSirt1. Additionally, circ-Sirt1 overexpression promoted the activation of Sirt1 signal pathways by upregulating miR-132. In conclusion, the protective effect of Circ-Sirt1 on MH7A depends on inhibiting cell proliferation, promoting apoptosis and miR-132-mediated Sirt1 pathway to reduce inflammation.
Collapse
Affiliation(s)
- Suhua Zhang
- Department of Rheumatology, Shouguang People's Hospital, Shouguang, China
| | - Jun Zhao
- Department of Orthopedics, Second Clinical College, Changzhi Medical College, Changzhi, China
| | - WuQiang Ma
- Department of Joint Surgery, Lanling County People's Hospital, Linyi, China
| |
Collapse
|
12
|
Erlandson KM, Piggott DA. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 2021; 18:157-175. [PMID: 33817767 PMCID: PMC8193917 DOI: 10.1007/s11904-021-00554-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH). RECENT FINDINGS Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV. Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.
Collapse
Affiliation(s)
- Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Damani A Piggott
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Rabaneda-Bueno R, Torres-Carrillo N, Ávila-Funes JA, Gutiérrez-Robledo LM, Pérez-Suárez TG, Acosta JL, Torres-Castro S, Fletes-Rayas AL, Gutierrez-Hurtado I, Sandoval-Pinto E, Cremades R, Torres-Carrillo NM. PTPN22 gene functional polymorphism (rs2476601) in older adults with frailty syndrome. Mol Biol Rep 2021; 48:1193-1204. [PMID: 33611779 DOI: 10.1007/s11033-021-06212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The frailty syndrome is a common clinical marker of vulnerability in older adults conducive to an overall decline in inflammatory stress responsiveness; yet little is known about the genetic risk factors for frailty in elderly. Our aim was to investigate the association between the rs2476601 polymorphism in PTPN22 gene and susceptibility to frailty in Mexican older adults. Data included 630 subjects 70 and older from The Coyoacán cohort, classified as frail, pre-frail, and non-frail following Fried's criteria. Sociodemographic and clinical characteristics were compared between groups at baseline and after a multivariate analysis. The rs2476601 polymorphism was genotyped by TaqMan genotyping assay using real-time PCR and genotype frequencies were determined for each frailty phenotype in all participants and subsets by age range. Genetic association was examined using stratified and interaction analyses adjusting for age, sex and variables selected in the multivariate analysis. Disability for day-life activities, depression and cognitive impairment were associated with the risk of pre-frailty and frailty at baseline and after adjustment. Carrying the T allele increased significantly the risk of frailty in patients 76 and older (OR 5.64, 95% CI 4.112-7.165) and decreased the risk of pre-frailty under no clinical signs of depression (OR 0.53; 95% CI 0.17-1.71). The PTPN22 polymorphism, rs2476601, could be a genetic risk factor for frailty as subject to quality of life. This is the first study analyzing such relationship in Mexican older adults. Confirming these findings requires additional association studies on wider age ranges in populations of older adults with frailty syndrome.
Collapse
Affiliation(s)
- Rubén Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 370 05, České Budějovice, Czech Republic.,Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - José Alberto Ávila-Funes
- Departamento de Geriatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Thalía Gabriela Pérez-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - José Luis Acosta
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional-Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Guasave, Sinaloa, México
| | | | - Ana Lilia Fletes-Rayas
- Departamento de Enfermería Clínica Integrada, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Itzae Gutierrez-Hurtado
- Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Elena Sandoval-Pinto
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Rosa Cremades
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
| |
Collapse
|
14
|
Omics biomarkers for frailty in older adults. Clin Chim Acta 2020; 510:363-372. [PMID: 32745578 DOI: 10.1016/j.cca.2020.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Frailty is a clinical state characterized by an age-related unsteady state of the body, a decline in physiological function, and an increased vulnerability to adverse outcomes. Early diagnosis of frailty is important for improving the quality of life in older adults and promoting healthy aging. The biological mechanisms underlying frailty have been extensively studied in recent years. Combining assessment tools and biomarkers can facilitate the early diagnosis of frailty. However, there is a lack of stable and reliable frailty-related biomarkers for use in clinical practice. Advances in the multi-omics platforms have provided new information on the molecular mechanisms underlying frailty. Thus, identifying biomarkers using omics-based approaches helps explore the physiological mechanisms underlying frailty, and aids the evaluation of the risk of frailty development and progression. This article reviews the current status of frailty biomarkers from the genomics, transcriptomics, proteomics, and metabolomics perspectives.
Collapse
|
15
|
Ma L, Chan P. Understanding the Physiological Links Between Physical Frailty and Cognitive Decline. Aging Dis 2020; 11:405-418. [PMID: 32257550 PMCID: PMC7069469 DOI: 10.14336/ad.2019.0521] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Declines in both physical and cognitive function are associated with increasing age. Understanding the physiological link between physical frailty and cognitive decline may allow us to develop interventions that prevent and treat both conditions. Although there is significant epidemiological evidence linking physical frailty to cognitive decline, a complete understanding of the underpinning biological basis of the two disorders remains fragmented. This narrative review discusses insights into the potential roles of chronic inflammation, impaired hypothalamic-pituitary axis stress response, imbalanced energy metabolism, mitochondrial dysfunction, oxidative stress, and neuroendocrine dysfunction linking physical frailty with cognitive decline. We highlight the importance of easier identification of strategic approaches delaying the progression and onset of physical frailty and cognitive decline as well as preventing disability in the older population.
Collapse
Affiliation(s)
- Lina Ma
- 1Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,2China National Clinical Research Center for Geriatric Medicine, Beijing, China
| | - Piu Chan
- 1Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,2China National Clinical Research Center for Geriatric Medicine, Beijing, China.,3Department of Neurology and Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,4Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
16
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
17
|
Opstad TB, Kalstad AA, Pettersen AÅ, Arnesen H, Seljeflot I. Novel biomolecules of ageing, sex differences and potential underlying mechanisms of telomere shortening in coronary artery disease. Exp Gerontol 2019; 119:53-60. [PMID: 30684534 DOI: 10.1016/j.exger.2019.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Telomere length (TL), growth differentiate factor (GDF)11, insulin growth factor (IGF)1, sirtuin (SIRT)1 and inflammatory processes have been related to ageing and age-related diseases, like coronary artery disease (CAD). We aimed to investigate the associations between leukocyte TLs (LTLs), chronological age, sex and comorbidities in CAD patients. Any covariations between LTL, GDF11, IGF1, SIRT-1 and pro-inflammatory cytokines were further assessed. METHODS In 300 patients with stable CAD (age 36-81 years, 20% females), DNA and RNA were isolated from whole blood for PCR analysis and relative quantification of LTLs and gene-expression of GDF11, IGF1,SIRT1, IL-12, IL-18 and IFNƴ, respectively. Serum was prepared for the analyses of circulating IL-18, IL-12, IL-6 and TNFα. RESULTS Patients with previous myocardial infarction (MI) presented with 20% shorter LTLs vs. patients without (p = 0.019) indicating LTLs to be of importance for CAD severity. The observation however, was only observed in men (p = 0.009, n = 115), in which the upper LTL quartile associated with 64% lower frequency of previous MI compared to quartile 1-3 (p = 0.005, adjusted). LTLs were not differently distributed according to sex or comorbidities such as hypertension, diabetes type 2 and metabolic syndrome. LTLs and GDF11 were inversely correlated to age (r = -0.17; p = 0.007 and r = -0.16; p = 0.010, respectively), however, separated in gender, LTL only in women (r = -0.37) and GDF11 only in men (r = -0.19) (p = 0.006, both). GDF11 and SIRT1 were strongly inter-correlated (r = 0.56, p ≤ 0.001), suggesting common upstream regulators. LTLs were moderately correlated to GDF11 and SIRT1 in overweight women (BMI ≥ 25 kg/m2) (r = 0.41; p = 0.027 and 0.43; p = 0.020, respectively), which may reflect common life-style influences on LTLs and these markers. In all women, we observed further that the highest LTL quartile associated with higher GDF11 and SIRT expression and lower circulating levels of IL-12, IL-18 and TNFα, as compared to quartile 1, which may indicate lifestyle influences on female LTLs. In men, the highest LTL quartile associated with lower IFNƴ expression and lower circulating TNFα. Overall, the results indicate an association between chronic low-grade inflammation and LTLs. CONCLUSIONS Shorter LTLs in CAD patients with previously suffered MI may indicate telomere attrition as part of its pathophysiology in men. The inverse association between LTLs and age exclusively in women underpins the previously reported decline in attrition rate in men with increasing age. As elevated GDF11 and SIRT1 along with attenuated pro-inflammatory cytokines seem to positively affect LTL in women, we hypothesize a potential sex-dimorphism in LTL regulation, which may implicate sex- adjusted health-preventive therapies.
Collapse
Affiliation(s)
- Trine B Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway.
| | - Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Alf Åge Pettersen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Ringerike Hospital, Vestre Viken HF, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Norway; Center for Heart Failure Research, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
18
|
Ma L, Niu H, Sha G, Zhang Y, Liu P, Li Y. Serum SIRT1 Is Associated with Frailty and Adipokines in Older Adults. J Nutr Health Aging 2019; 23:246-250. [PMID: 30820512 DOI: 10.1007/s12603-018-1149-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Because frailty is a major health concern among older patients, identifying frailty-related biomarkers will help in the early detection and prevention of frailty. Thus, we aimed to determine the association between circulating levels of silent mating-type information regulation 2 homolog 1 (SIRT1) and frailty. METHODS We assessed circulating SIRT1 levels in 16 robust, 74 prefrail, and 40 frail older adults. Frailty was diagnosed based on the Fried phenotype. Circulating cytokine and adipokine (e.g., vaspin, adiponectin, and leptin) levels were assessed. Differences in SIRT1 levels among the three subject groups were compared; correlations of SIRT1 levels with physical function and adipokine and cytokine levels were analyzed. RESULTS Serum SIRT1 levels were significantly higher among frail older adults than among robust ones. Older adults with slowness or weight loss had high SIRT1 levels. Serum SIRT1 levels negatively correlated with gait speed, even after adjustment for age and sex; age; and insulin, vaspin, and leptin levels; they correlated negatively with phospholipase A2 levels. CONCLUSIONS High SIRT1 levels were observed in frail elderly patients and were correlated with decreased physical function. Insulin and adipokine levels might be the link between SIRT1 and frailty, whereas inflammation may not be involved in this process.
Collapse
Affiliation(s)
- L Ma
- Dr. Lina Ma, Department of Geriatrics, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing 100053, China. E-mail:
| | | | | | | | | | | |
Collapse
|
19
|
El Assar M, Angulo J, Walter S, Carnicero JA, García-García FJ, Sánchez-Puelles JM, Sánchez-Puelles C, Rodríguez-Mañas L. Better Nutritional Status Is Positively Associated with mRNA Expression of SIRT1 in Community-Dwelling Older Adults in the Toledo Study for Healthy Aging. J Nutr 2018; 148:1408-1414. [PMID: 30184230 DOI: 10.1093/jn/nxy149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 01/23/2023] Open
Abstract
Background The expression of certain genes involved in response to oxidative stress is likely related to aging-related outcomes, such as frailty in old age. Given nutrition's substantial impact in aging and age-related diseases, one of its mechanisms might be through influencing gene expression. Objective This study aimed to investigate the association between nutrition and the expression of 15 genes related to cellular response to stress in older community-dwelling individuals. Methods A nested case-control study of 350 participants (mean ± SEM age: 76.5 ± 6.9 y, 42.9% men, 22% frail according to Fried's criteria) was selected from the Toledo Study for Healthy Aging. Blood-derived RNA was retro-transcribed into complementary DNA. TaqMan Arrays were used for determining gene expression. The Mini Nutritional Assessment (MNA) and the PREDIMED (PREvención con DIeta MEDiterranea) questionnaire measured nutritional status and adherence to the Mediterranean diet (MD), respectively. Data were reweighed so that inference from linear and logistic regression models applied to the original sampling population. Results Higher MNA scores were associated with higher expressions of the gene coding for sirtuin-1 (SIRT1), regardless of age, sex, and Charlson comorbidity score (P = 0.04) and even after adjusting for frailty status (P = 0.016) and level of adherence to the MD (P = 0.04). Malnutrition risk and SIRT1 gene expression were inversely associated (P = 0.0045) independently of frailty status (P = 0.0045) and level of adherence to the MD (P = 0.0075). Conclusions In older individuals, improvement in nutritional status is positively associated with SIRT1 gene expression independently of frailty status or adherence to the MD. These findings may provide potential biomarkers and targets for health interventions among the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Histología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Stefan Walter
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - José Antonio Carnicero
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Francisco José García-García
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - José-María Sánchez-Puelles
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Sánchez-Puelles
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| |
Collapse
|
20
|
Hao Q, Wang Y, Ding X, Dong B, Yang M, Dong B, Wei Y. G-395A polymorphism in the promoter region of the KLOTHO gene associates with frailty among the oldest-old. Sci Rep 2018; 8:6735. [PMID: 29712948 PMCID: PMC5928057 DOI: 10.1038/s41598-018-25040-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Frailty is characterized by a decline in physiological reserve and increased vulnerability. Previous studies have shown that KLOTHO (KL) plays a protective role in several age-related diseases. We hypothesize a probable protective effect of KL on frailty in the elderly population and included a cohort of Chinese nonagenarians and centenarians for our study. This study is part of a cross-sectional study and secondary analysis of the Project of Longevity and Aging in Dujiangyan (PLAD) study, which was conducted in Southwest China. Community-dwelling Chinese residents aged 90 years or older were included in this study. Frailty was determined using the FRAIL scale as proposed by the International Association of Nutrition and Aging. On the FRAIL scale, frailty was defined by a score of ≥3. G-395A (rs1207568) genotyping of the promoter region of the KL gene was performed using TaqMan allelic discrimination assay. A total of 632 participants (68.4% females; mean age: 93.5 ± 3.2 years) were included. KL G-395A polymorphism genotype frequencies were 1.7% AA, 25.6% GA, and 72.7% GG in our sample. GG genotype frequencies for the frailty and control groups were 83.6% and 71.2%, respectively. Frailty prevalence was significantly lower in the GA+AA group when compared to the GG genotype group (6.9% vs. 13.3%, P = 0.026). In addition, subjects with a GA+AA genotype had a significantly lower risk of frailty (odds ratio (OR): 0.47, 95% confidence interval (CI) 0.23 to 0.97, P = 0.040) compared to the GG genotype after adjusting for age, gender, education level, smoking, alcohol consumption, exercise, body mass index (BMI), cognitive impairment, and other potential factors. KL-395A allele carrying genotypes (GA and AA) is associated with a lower risk of frailty relative to GG genotypes in a sample of Chinese nonagenarians and centenarians.
Collapse
Affiliation(s)
- Qiukui Hao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Wang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Ding
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Dong
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Zainabadi K. The variable role of SIRT1 in the maintenance and differentiation of mesenchymal stem cells. Regen Med 2018; 13:343-356. [DOI: 10.2217/rme-2017-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SIRT1 is an NAD+-dependent deacetylase that acts as a nutrient sensitive regulator of longevity. SIRT1 also acts as a key regulator of mesenchymal stem cells (MSCs), adult stem cells that give rise to tissues such as bone, fat, muscle and cartilage. This review focuses on how SIRT1 regulates the self-renewal, multipotency and differentiation of MSCs. The variable role of SIRT1 in promoting the differentiation of MSCs towards certain lineages, while repressing others, will be examined within the broader context of aging, calorie restriction, and regenerative medicine. Finally, recent animal and human studies will be highlighted which paint an overall salutary role for SIRT1 in protecting MSCs (and resulting tissues) from age-related atrophy and dysfunction.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Association of SIRT1 gene polymorphism and its expression for the risk of alcoholic fatty liver disease in the Han population. Hepatol Int 2017; 12:56-66. [PMID: 29189974 DOI: 10.1007/s12072-017-9836-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the associations between SIRT1 polymorphisms and their expression in patients with alcoholic fatty liver disease (AFLD). METHODS A total of 268 heavy drinkers were divided into the AFLD group (n = 176) and alcoholic control (n = 92) and 237 light-/non-drinkers into the NAFLD (non-AFLD) group (n = 117) and healthy control (n = 120). The genotyping of SIRT1 (rs33957861, rs11599176, rs12413112 and rs35689145) was detected by the Sequenom MassARRAY iPLEX test. The mRNA and protein expressions of SIRT1 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assays (ELISA), respectively. RESULTS SIRT1 gene rs33957861 and rs11599176 polymorphisms significantly reduce the risk of NAFLD and AFLD, while rs35689145 remarkably increases the risk. Haplotypes of AAAA (rs33957861-rs11599176-rs12413112-rs35689145), AAAA, CAGA and CGAA can appreciably lower the presence of AFLD, but CAAG had an elevated AFLD risk. Besides, in the NAFLD and AFLD groups, a decreased BMI was found in the mutant genotype carriers of rs33957861, rs11599176 and rs12413112, but an increased BMI was observed in the rs35689145 mutant genotype carriers when compared to those with the wild-type homozygous genotype ones. Furthermore, rs33957861 C>T, rs11599176 A>G and BMI were independent risk factors of AFLD. There was no difference among four SNPs of SIRT1 and its mRNA and protein expressions in all groups. CONCLUSION SIRT1 polymorphisms and their expression were associated with the presence of AFLD, and there was a close relationship among four SNPs and BMI in AFLD patients, but no SNP was related to its expression.
Collapse
|
23
|
Kane AE, Howlett SE. Advances in Preclinical Models of Frailty. J Gerontol A Biol Sci Med Sci 2017; 72:867-869. [DOI: 10.1093/gerona/glx072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 01/10/2023] Open
|