1
|
Wang TY, Wu YW, Lu HJ, Liao TY, Tai JH, Huang SP, Wang FY, Yu TH, Ting CT, Chaw SM, Wang HY. Chromosome-Level Genome Assembly of the Loach Goby Rhyacichthys aspro Offers Insights Into Gobioidei Evolution. Mol Ecol Resour 2025:e14110. [PMID: 40168108 DOI: 10.1111/1755-0998.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
The percomorph fish clade Gobioidei is a suborder that comprises over 2200 species distributed in nearly all aquatic habitats. To understand the genetics underlying their species diversification, we sequenced and annotated the genome of the loach goby, Rhyacichthys aspro, an early-diverging group, and compared it with nine additional Gobioidei species. Within Gobioidei, the loach goby possesses the smallest genome at 594 Mb, and a rise in species diversity from early-diverging to more recently diverged lineages is mirrored by enlarged genomes and a higher presence of transposable elements (TEs), particularly DNA transposons. These DNA transposons are enriched in genic and regulatory regions and their copy number increase is strongly correlated with substitution rate, suggesting that DNA repair after transposon excision/insertion leads to nearby mutations. Consequently, the proliferation of DNA transposons might be the crucial driver of Gobioidei diversification and adaptability. The loach goby genome also points to mechanisms of ecological adaptation. It contains relatively few genes for lateral line development but an overrepresentation of synaptic function genes, with genes putatively under selection linked to synapse organisation and calcium signalling, implicating a sensory system distinct from other Gobioidei species. We also see an overabundance of genes involved in neurocranium development and renal function, adaptations likely connected to its flat morphology suited for strong currents and an amphidromous life cycle. Comparative analyses with hill-stream loaches and the European eel reveal convergent adaptations in body shape and saltwater balance. These findings shed new light on the loach goby's survival mechanisms and the broader evolutionary trends within Gobioidei.
Collapse
Affiliation(s)
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hao-Jun Lu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-Yu Liao
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jui-Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | | | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Institutes of Applied Research, Kaohsiung, Taiwan
| | - Tsung-Han Yu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | | | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Bian C, Huang Y, Li R, Xu P, You X, Lv Y, Ruan Z, Chen J, Xu J, Shi Q. Genomics comparisons of three chromosome-level mudskipper genome assemblies reveal molecular clues for water-to-land evolution and adaptation. J Adv Res 2024; 58:93-104. [PMID: 37220853 PMCID: PMC10982859 DOI: 10.1016/j.jare.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Mudskippers are a large group of amphibious fishes that have developed many morphological and physiological capacities to live on land. Genomics comparisons of chromosome-level genome assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus magnuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land evolution and adaptation. METHODS Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome, downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons of several representative gene families among the three amphibious mudskippers and some other teleosts were also performed to find some molecular clues for terrestrial adaptation. RESULTS We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromosome analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphoprotein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalkylamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove a step-by-step evolution for the mudskippers' water-to-land adaptation. CONCLUSION These high-quality mudskipper genome assemblies will become valuable genetic resources for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.
Collapse
Affiliation(s)
- Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China.
| | - Yu Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Pengwei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China.
| |
Collapse
|
3
|
Corush JB, Zhang J. One size does not fit all: Variation in anatomical traits associated with emersion behavior in mudskippers (Gobiidae: Oxudercinae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.967067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Life histories involving transitions between differing habitats (i.e., aquatic to terrestrial or marine to freshwater) require numerous anatomical, physiological, and behavioral changes. Often, the traits associated with these changes are thought to come in suites, but all traits thought to be associated with particular life histories may not be required. While some traits are found in all species with a particular habitat transition, a grab bag approach may apply to other traits in that any trait may be sufficient for successful habitat transitions. We examine patterns of morphological traits associated with prolonged emersion in mudskipper, an amphibious fishes clade, where prolonged emersion appears twice. We test the evolutionary history of multiple characteristics associated with cutaneous respiration. We find most traits thought to be key for prolonged emersion show no phylogenetic signal and no tight correlation with prolonged emersion. Such traits appear in species with prolonged emersion but also non-emerging species. Only capillary density, which, when increased, allows for increased oxygen absorption, shows strong phylogenetic signal and correlation with prolonged emersion. Further experimental, functional genomics, and observational studies are needed to fully understand the mechanisms associated with each of these traits. With respect to traits associated with other particular behaviors, a comparative framework can be helpful in identifying evolutionary correlates.
Collapse
|