1
|
Ferrena A, Zheng XY, Jackson K, Hoang B, Morrow BE, Zheng D. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison. NAR Genom Bioinform 2024; 6:lqae134. [PMID: 39345754 PMCID: PMC11437360 DOI: 10.1093/nargab/lqae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevyn Jackson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Obstetrics and Gynecology, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Ferrena A, Zheng XY, Jackson K, Hoang B, Morrow B, Zheng D. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592708. [PMID: 38766089 PMCID: PMC11100619 DOI: 10.1101/2024.05.06.592708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or "pseudobulking" samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. Availability and Implementation: scDAPP is freely available for non-commercial usage as an R package under the MIT license. Source code, documentation and sample data are available at the GitHub (https://github.com/bioinfoDZ/scDAPP).
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevyn Jackson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Obstetrics and Gynecology, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Waichman TV, Vercesi ML, Berardino AA, Beckel MS, Giacomini D, Rasetto NB, Herrero M, Di Bella DJ, Arlotta P, Schinder AF, Chernomoretz A. scX: a user-friendly tool for scRNAseq exploration. BIOINFORMATICS ADVANCES 2024; 4:vbae062. [PMID: 38779177 PMCID: PMC11109472 DOI: 10.1093/bioadv/vbae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Motivation Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. Results In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis. Availability and implementation Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.
Collapse
Affiliation(s)
- Tomás V Waichman
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - M L Vercesi
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - Ariel A Berardino
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, CP1405, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
| | - Maximiliano S Beckel
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, CP1405, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - Natalí B Rasetto
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - Magalí Herrero
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - Daniela J Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, United States
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, United States
| | - Alejandro F Schinder
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, CP1405, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, CP1405, Argentina
| | - Ariel Chernomoretz
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, CP1405, Argentina
- Departamento de Física, FCEN, Universidad de Buenos Aires, Buenos Aires, CP1428, Argentina
- INFINA, UBA-CONICET, Buenos Aires, CP 1428, Argentina
| |
Collapse
|
4
|
Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, Qin W, Fan J, Wang C, Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024; 42:180-197. [PMID: 38350421 DOI: 10.1016/j.ccell.2024.01.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.
Collapse
Affiliation(s)
- Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- I-Mab Biopharma, Shanghai, China; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|