1
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Anwar MT, Adak AK, Kawade SK, Wu HR, Angata T, Lin CC. Combining CuAAC reaction enables sialylated Bi- and triantennary pseudo mannose N-glycans for investigating Siglec-7 interactions. Bioorg Med Chem 2022; 67:116839. [PMID: 35640379 DOI: 10.1016/j.bmc.2022.116839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Naturally occurring N-glycans display much diversity in modifications, linkages, and peripheral presentation of the oligosaccharide chain. Despite continued advancements in oligosaccharide synthesis, synthetic access to these natural glycans remains challenging. Biologically relevant complex N-glycan mimetics with various natural and unnatural modifications are an alternate way for investigating glycan-protein interactions. Further supporting this pattern, we report here a new class of sialylated bi- and triantennary pseudo mannose N-glycans reproducing orientation of the underlying glycan chain and branching patterns and replacing the two inner mannopyranosyl units with 1,2,3-triazole rings. Such mimetics are straightforwardly generated by implementing multiple intermolecular Cu(I)-catalyzed azide-alkyne cycloaddition between chemoenzymatically synthesized azido sialosides and rationally designed C-3 and C-6 di-O- or C-2, C-3, and C-6 tri-O-alkynylated mannoside. Human recombinant Siglec-7-Fc fusion protein recognizes almost all sialylated pseudo mannose N-glycans in the microarray. However, a differential Sia-binding pattern was also observed. Given the library size, comparison of pairwise mannose N-glycan combinations showed that biantennary linear α(2,3)α(2,8)- and α(2,6)α(2,8)- or branched α(2,3)α(2,6)-, and triantennary branched α(2,3)α(2,6)-sialyl pseudo N-glycans possess similar binding capabilities and affinity to recombinant Siglec-7-Fc. While the full range of topological mannose arms remain elusive, the bi- and triantennary mimics are simpler structures for interrogating Siglec interactions.
Collapse
Affiliation(s)
| | - Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Sachin Kisan Kawade
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Suenaga T, Mori Y, Suzutani T, Arase H. Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands. Biochem Biophys Res Commun 2022; 613:41-46. [DOI: 10.1016/j.bbrc.2022.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
|
4
|
Li P, Kawade SK, Adak AK, Shen Y, Fan C, Hsieh Y, Angata T, Chen Y, Lin C. Ligand‐assisted imprinting‐probe‐labeling
strategy reveals Siglec‐7 ‐ glycoprotein interactions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of Chemistry and Biochemistry National Chung Cheng University Chiayi Taiwan
| | | | - Avijit K. Adak
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Ju Shen
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Chen‐Yo Fan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Yu‐Heng Hsieh
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
5
|
Suenaga T, Mori Y, Suzutani T, Arase H. Siglec-7 mediates varicella-zoster virus infection by associating with glycoprotein B. Biochem Biophys Res Commun 2022; 607:67-72. [DOI: 10.1016/j.bbrc.2022.03.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
|
6
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
7
|
Kooner AS, Diaz S, Yu H, Santra A, Varki A, Chen X. Chemoenzymatic Synthesis of Sialosides Containing 7- N- or 7,9-Di- N-acetyl Sialic Acid as Stable O-Acetyl Analogues for Probing Sialic Acid-Binding Proteins. J Org Chem 2021; 86:14381-14397. [PMID: 34636559 DOI: 10.1021/acs.joc.1c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel chemoenzymatic synthon strategy has been developed to construct a comprehensive library of α2-3- and α2-6-linked sialosides containing 7-N- or 7,9-di-N-acetyl sialic acid, the stable analogue of naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl-sialic acid. Diazido and triazido-mannose derivatives that were readily synthesized chemically from inexpensive galactose were shown to be effective chemoenzymatic synthons. Together with bacterial sialoside biosynthetic enzymes with remarkable substrate promiscuity, they were successfully used in one-pot multienzyme (OPME) sialylation systems for highly efficient synthesis of sialosides containing multiple azido groups. Conversion of the azido groups to N-acetyl groups generated the desired sialosides. The hydrophobic and UV-detectable benzyloxycarbonyl (Cbz) group introduced in the synthetic acceptors of sialyltransferases was used as a removable protecting group for the propylamine aglycon of the target sialosides. The resulting N-acetyl sialosides were novel stable probes for sialic acid-binding proteins such as plant lectin MAL II, which bond strongly to sialyl T antigens with or without an N-acetyl at C7 or at both C7 and C9 in the sialic acid.
Collapse
Affiliation(s)
- Anoopjit Singh Kooner
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Sandra Diaz
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
8
|
Dandopath Patra M. Comparative study of binding abilities of Siglec-7 to different ligands using molecular modeling techniques and structural analysis. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1954656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Song Y, She Z, Huang Z, Wang S, Liu X, Zhang Q, Sun J, Di D, Deng Y. Are third-generation active-targeting nanoformulations definitely the best? In vitro and in vivo comparisons of pixantrone-loaded liposomes modified with different sialic acid derivatives. Drug Deliv Transl Res 2021; 12:647-661. [PMID: 33928513 DOI: 10.1007/s13346-021-00973-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
Treatment with sialic acid-octadecylamine (SA-ODA)-modified pixantrone (Pix) liposomes results in favorable antitumor effects by targeting tumor-associated macrophages (TAMs). To explore the influence of different types of SA decorations on antitumor efficiency, we synthesized a PEGylated SA derivative, SA-PEG2000-DSPE, and combined it with SA-ODA to construct three representative types of SA-modified liposomes (SA-ODA-modified Pix liposomes, SA-ODA-modified Pix liposomes with different PEG densities, and SA-PEG2000-DSPE-modified Pix liposomes, named Pix-SACL, Pix-SPL-0.2/0.5/2.0/5.0, and Pix-SAPL, respectively). All the Pix liposomes were nanoscale formulations, having diameters between 100 and 150 nm, high encapsulation efficiencies (> 90%), and slow drug release properties. The in vivo blood circulation time of the PEGylated formulations (Pix-SPL-0.2/0.5/2.0/5.0 and Pix-SAPL) showed an upward trend with increasing PEG density, but there was no significant difference between adjacent groups. All PEGylated formulations displayed increased tumor accumulation when compared with Pix-SACL, but there was no significant difference among them. However, the antitumor activity of SA-modified liposomes was not positively correlated with circulation time or tumor accumulation in S180-bearing mice. Pix-SPL-0.2 displayed the strongest antitumor effect and lowest toxicity among the formulations tested in this study. With Pix-SPL-0.2 treatment, 66.7% of the mice demonstrated tumor shedding and wound healing.
Collapse
Affiliation(s)
- Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhennan She
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| | - Zhenjun Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Zhang
- Department of General Surgery, General Hospital of Benxi Iron and Steel Co., Ltd, Benxi, China
| | - Jing Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Donghua Di
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
10
|
Yoshimura A, Asahina Y, Chang LY, Angata T, Tanaka H, Kitajima K, Sato C. Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J Biol Chem 2021; 296:100477. [PMID: 33640457 PMCID: PMC8040268 DOI: 10.1016/j.jbc.2021.100477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid (Sia)-binding immunoglobulin-like lectin 7 (Siglec-7) is an inhibitory receptor primarily expressed on natural killer (NK) cells and monocytes. Siglec-7 is known to negatively regulate the innate immune system through Sia binding to distinguish self and nonself; however, a counter-receptor bearing its natural ligand remains largely unclear. Here, we identified a counter-receptor of Siglec-7 using K562 hematopoietic carcinoma cells presenting cell surface ligands for Siglec-7. We affinity-purified the ligands using Fc-ligated recombinant Siglec-7 and diSia-dextran polymer, a strong inhibitor for Siglec-7. We then confirmed the counter-receptor for Siglec-7 as leukosialin (CD43) through mass spectrometry, immunoprecipitation, and proximity labeling. Additionally, we demonstrated that the cytotoxicity of NK cells toward K562 cells was suppressed by overexpression of leukosialin in a Siglec-7-dependent manner. Taken together, our data suggest that leukosialin on K562 is a counter-receptor for Siglec-7 on NK cells and that a cluster of the Sia-containing glycan epitope on leukosialin is key as trans-ligand for unmasking the cis-ligand.
Collapse
Affiliation(s)
- Atsushi Yoshimura
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Yuki Asahina
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan; Integrated Glyco-Biomedical Research Center (iGMed), Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan; Integrated Glyco-Biomedical Research Center (iGMed), Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
11
|
The conserved arginine residue in all siglecs is essential for Siglec-7 binding to sialic acid. Biochem Biophys Res Commun 2020; 534:1069-1075. [PMID: 33248687 DOI: 10.1016/j.bbrc.2020.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 11/21/2022]
Abstract
Siglecs are sialic acid (Sia)-binding immunoglobulin-like lectins; the majority of Siglecs functions as transmembrane receptors on the immune cells via Sia residues. Recently, a new Sia binding site in Siglec-7, termed site 2, where arginine (R) 67 was critical, was identified by computational modeling and biochemical analyses, relative to the primary Sia binding site, termed site 1, containing critical R124. Here, the presence of a new essential R94 residue, which is completely conserved among all identified Siglecs, was demonstrated. A mutation of R94 residue in Siglec-7 led to the disappearance of the Sia binding property, similar to a site 1 mutation (R124A). R94 is close to R67 in site 2, and site 2 mutations at either of them abolished the ligand-binding properties to both gangliosides and glycoproteins. These data suggest that, in addition to site 1, the conserved R residue among Siglecs in site 2 is another functional site.
Collapse
|
12
|
Melo CM, Prado HP, Attie GA, Ruiz DL, Girão MJBC, Pinhal MADS. In silico investigation of heparanase-correlated genes in breast cancer subtypes. EINSTEIN-SAO PAULO 2020; 18:eAO5447. [PMID: 33053017 PMCID: PMC7531901 DOI: 10.31744/einstein_journal/2020ao5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2020] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the possible genes that may be related to the mechanisms that modulate heparanase-1. Methods The analysis was conducted at Universidade Federal de São Paulo, on the data provided by: The Cancer Genome Atlas, University of California Santa Cruz Genome Browser, Kyoto Encyclopedia of Genes and Genomes Pathway Database, Database for Annotation, Visualization and Integrated Discovery Bioinformatics Database and the softwares cBioPortal and Ingenuity Pathway Analysis. Results Using messenger RNA expression pattern of different molecular subtypes of breast cancer, we proposed that heparinase-1 was co-related with its progression. In addition, genes that were analyzed presented co-expression with heparanase-1. The results that showed that heparanase-1 co-expressed with phosphoinositide 3-kinase adapter protein 1, sialic acid-binding immunoglobulin-like lectin 7, and leukocyte-associated immunoglobulin-like receptor 1 are directed related with immune system evasion during breast cancer progression. Furthermore, cathepsin L was co-expressed with heparanase-1 and transformed inactive heparanase-1 form into active heparanase-1, triggering extracellular matrix remodeling, which contributes to enhanced tumor-host interaction of the tumor. Conclusion The signaling pathway analysis using bioinformatics tools gives supporting evidence of possible mechanisms related to breast cancer development. Evasion genes of the immune system co-expressed with heparanase-1, a enzyme related with tumor progression.
Collapse
|
13
|
Vijayan M, Lee CL, Wong VHH, Wang X, Bai K, Wu J, Koistinen H, Seppälä M, Lee KF, Yeung WSB, Ng EHY, Chiu PCN. Decidual glycodelin-A polarizes human monocytes into a decidual macrophage-like phenotype through Siglec-7. J Cell Sci 2020; 133:jcs244400. [PMID: 32513821 DOI: 10.1242/jcs.244400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Decidual macrophages constitute 20-30% of the total leukocytes in the uterus of pregnant women, regulating the maternal immune tolerance and placenta development. Abnormal number or activities of decidual macrophages (dMs) are associated with fetal loss and pregnancy complications, such as preeclampsia. Monocytes differentiate into dMs in a decidua-specific microenvironment. Despite their important roles in pregnancy, the exact factors that regulate the differentiation into dMs remain unclear. Glycodelin-A (PAEP, hereafter referred to as GdA) is a glycoprotein that is abundantly present in the decidua, and plays an important role in fetomaternal defense and placental development. It modulates the differentiation and activity of several immune cell types residing in the decidua. In this study, we demonstrated that GdA induces the differentiation of human monocytes into dM-like phenotypes in terms of transcriptome, cell surface marker expression, secretome, and regulation of trophoblast and endothelial cell functions. We found that Sialic acid-binding Ig-like lectin 7 (Siglec-7) mediates the binding and biological actions of GdA in a sialic acid-dependent manner. We, therefore, suggest that GdA, induces the polarization of monocytes into dMs to regulate fetomaternal tolerance and placental development.
Collapse
Affiliation(s)
- Madhavi Vijayan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Vera H H Wong
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Xia Wang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Kungfeng Bai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian Wu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Markku Seppälä
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Discovery of a new sialic acid binding region that regulates Siglec-7. Sci Rep 2020; 10:8647. [PMID: 32457377 PMCID: PMC7250851 DOI: 10.1038/s41598-020-64887-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/21/2020] [Indexed: 11/11/2022] Open
Abstract
Siglec-7 is a human CD33-like siglec, and is localised predominantly on human natural killer (NK) cells and monocytes. Siglec-7 is considered to function as an immunoreceptor in a sialic acid-dependent manner. However, the underlying mechanisms linking sialic acid-binding and function remain unknown. Here, to gain new insights into the ligand-binding properties of Siglec-7, we carried out in silico analysis and site-directed mutagenesis, and found a new sialic acid-binding region (site 2 containing R67) in addition to the well-known primary ligand-binding region (site 1 containing R124). This was supported by equilibrium dialysis, STD-NMR experiments, and inhibition analysis of GD3-binding toward Siglec-7 using synthetic sialoglycoconjugates and a comprehensive set of ganglioside-based glycoconjugates. Our results suggest that the two ligand-binding sites are potentially controlled by each other due to the flexible conformation of the C-C′ loop of Siglec-7.
Collapse
|
15
|
Tao L, Wang S, Yang L, Jiang L, Li J, Wang X. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin Exp Immunol 2020; 201:161-170. [PMID: 32319079 DOI: 10.1111/cei.13444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I)-dependent inhibitory receptors on natural killer (NK) cells have been found to contribute to NK cell dysfunction in hepatocellular carcinoma (HCC). However, the roles of MHC-I-independent inhibitory receptors on NK cells in HCC remain poorly defined. In this study, we analyzed the expression of the MHC-I-independent inhibitory receptors sialic acid-binding immunoglobulin-like lectin (Siglec)-7 and Siglec-9 on NK cells by analyzing the peripheral blood of 35 HCC patients and 63 healthy donors. We observed that HCC patients had lower frequencies and total numbers of NK cells in the peripheral blood. Importantly, both the expression levels of Siglec-7 on NK cells and the frequencies of Siglec-7+ NK cells were significantly reduced in HCC patients, which was accompanied by a decrease in activating receptor and an increase in inhibitory receptor expression on NK cells. Moreover, Siglec-7+ NK cells expressed higher levels of activating receptors and displayed stronger effector functions, compared with Siglec-7- NK cells. Our findings demonstrate for the first time that reduced Siglec-7 expression predicts NK cell dysfunction in HCC patients, suggesting that Siglec-7 may be a potential marker of functional NK cell subset in HCC patients.
Collapse
Affiliation(s)
- L Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - S Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - L Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - L Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - J Li
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - X Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
17
|
Huang HT, Su SC, Chiou TJ, Lin YH, Shih YC, Wu YX, Fan TH, Twu YC. DNA methylation-mediated Siglec-7 regulation in natural killer cells via two 5' promoter CpG sites. Immunology 2020; 160:38-51. [PMID: 32027025 DOI: 10.1111/imm.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
First discovered on the natural killer (NK) cell, the cell surface inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is known for regulating many important biological activities. However, the detail regulatory mechanism for Siglec-7 expression in NK cells currently remains unclear. In this study, we aimed to investigate how cell surface Siglec-7 expression is regulated and found that, in both NK cell lines and peripheral NK cells, transcription was the main regulatory step. Furthermore, when NK-92MI and peripheral NK cells were treated with DNA methyltransferase (DNMT) inhibitor, the CpG island, with 9 CpG sites, in 5' Siglec-7 promoter became noticeably hypomethylated, and Siglec-7 expression increased in both RNA transcript and surface protein. Within this CpG island, we identified both CpG 8 and CpG 9 as two key regulators responsible for Siglec-7 expression. Additionally, by using histone deacetylases (HDAC) inhibitor, butyric acid, we showed that Siglec-7 expression was also subjected to the histone modification. And a combined treatment with both 5-azacytidine and butyric acid showed an additive effect on Siglec-7 transcript expression in peripheral NK cells.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chen Shih
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Hsi Fan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
19
|
Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD. Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci U S A 2018; 115:10410-10415. [PMID: 30254166 PMCID: PMC6187154 DOI: 10.1073/pnas.1804108115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and destroy abnormal host cells, such as tumor cells or those infected by viral pathogens. To safely accomplish these functions, NK cells display activating receptors that detect stress molecules or viral ligands displayed at the cell surface, balanced by inhibitory receptors that bind to self-molecules. To date, such activating and inhibitory receptors on NK cells are not known to recognize bacterial determinants. Moreover, NK cell responses to direct interactions with extracellular bacteria are poorly explored. In this study, we observed the human neonatal pathogen group B Streptococcus (GBS) can directly engage human NK cells. The interaction was mediated through the B6N segment of streptococcal β-protein, binding to the inhibitory receptor Siglec-7 via its amino-terminal V-set domain. Unlike classical Siglec binding, the interaction is also independent of its sialic acid recognition property. In contrast to WT GBS, mutants lacking β-protein induced efficient pyroptosis of NK cells through the NLRP3 inflammasome, with production and secretion of the proinflammatory cytokine IL-1β and dissemination of the cytotoxic molecule granzyme B. We postulate that GBS evolved β-protein engagement of inhibitory human Siglec-7 to suppress the pyroptotic response of NK cells and thereby block recruitment of a broader innate immune response, i.e., by "silencing the sentinel."
Collapse
Affiliation(s)
- Jerry J Fong
- Glycobiology Research and Training Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Chih-Ming Tsai
- Glycobiology Research and Training Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sudeshna Saha
- Glycobiology Research and Training Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Victor Nizet
- Glycobiology Research and Training Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ajit Varki
- Glycobiology Research and Training Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
Tsuchida A, Senda M, Ito A, Saito S, Kiso M, Ando T, Harduin-Lepers A, Matsuda A, Furukawa K, Furukawa K. Roles of GalNAc-disialyl Lactotetraosyl Antigens in Renal Cancer Cells. Sci Rep 2018; 8:7017. [PMID: 29728594 PMCID: PMC5935701 DOI: 10.1038/s41598-018-25521-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/19/2018] [Indexed: 11/24/2022] Open
Abstract
GalNAc-disialyl Lc4 (GalNAc-DSLc4) was reported as a novel antigen that associated with malignant features of renal cell cancers (RCCs). To clarify roles of GalNAc-DSLc4 in malignant properties of RCCs, we identified B4GalNAc-T2 as a responsible gene for the synthesis of GalNAc-DSLc4, and prepared stable transfectants of GalNAc-T2 cDNA using VMRC-RCW cells, resulting in the establishment of high expressants of GalNAc-DSLc4. They showed increased proliferation and invasion, and specific adhesion to laminin. In the transfectants, PI3K/Akt signals were highly activated by serum stimulation or adhesion to laminin. GalNAc-DSLc4 was co-localized in lipid rafts with integrin β1 and caveolin-1 in both immunoblotting of fractionated detergent extracts and immunocytostaining, particularly when stimulated with serum. Masking of GalNAc-DSLc4 with antibodies as well as PI3K inhibitor suppressed malignant properties of the transfectants. These results suggested that GalNAc-DSLc4 is involved in malignant properties of RCCs by forming a molecular complex with integrins in lipid rafts.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, Itabashi, 173-0003, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motohiro Senda
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Urology, Nagoya University School of Medicine, Nagoya, 466-8550, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Seiichi Saito
- Department of Urology, University of Ryukyus School of Medicine, Nishihara-cho, 903-0215, Okinawa, Japan
| | - Makoto Kiso
- Facalty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Takayuki Ando
- Department of Drug and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, 420-8637, Japan
| | - Anne Harduin-Lepers
- Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Villeneuve d'Ascq, 59655, France
| | - Akio Matsuda
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, Itabashi, 173-0003, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan
| | - Koichi Furukawa
- Department of Lifelong Sports and Health Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan.
| |
Collapse
|
21
|
Huang CH, Liao YJ, Fan TH, Chiou TJ, Lin YH, Twu YC. A Developed NK-92MI Cell Line with Siglec-7 neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells. Int J Mol Sci 2018; 19:ijms19041073. [PMID: 29617289 PMCID: PMC5979288 DOI: 10.3390/ijms19041073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs) to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS). The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK) degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.
Collapse
Affiliation(s)
- Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 112, Taiwan.
| | - Ting-Hsi Fan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan.
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
22
|
Yamaguchi S, Yoshimura A, Yasuda Y, Mori A, Tanaka H, Takahashi T, Kitajima K, Sato C. Chemical Synthesis and Evaluation of a Disialic Acid-Containing Dextran Polymer as an Inhibitor for the Interaction between Siglec 7 and Its Ligand. Chembiochem 2017; 18:1194-1203. [DOI: 10.1002/cbic.201600694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sho Yamaguchi
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H-101 Ookayama Meguro Tokyo 152-8552 Japan
| | - Atsushi Yoshimura
- Bioscience and Biotechnology Center; Nagoya University; Chikusa Nagoya 464-8601 Japan
| | - Yu Yasuda
- Bioscience and Biotechnology Center; Nagoya University; Chikusa Nagoya 464-8601 Japan
| | - Airi Mori
- Bioscience and Biotechnology Center; Nagoya University; Chikusa Nagoya 464-8601 Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H-101 Ookayama Meguro Tokyo 152-8552 Japan
| | - Takashi Takahashi
- Yokohama University of Pharmacy; 601 Matano-chou Totsuka-ku Yokohama Kanagawa 245-0066 Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center; Nagoya University; Chikusa Nagoya 464-8601 Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center; Nagoya University; Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
23
|
Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes. Sci Rep 2017; 7:45319. [PMID: 28378743 PMCID: PMC5381285 DOI: 10.1038/srep45319] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in β-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore β-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on β-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented β-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of β-cell function and survival.
Collapse
|
24
|
Abstract
Many Siglecs function as inhibitory receptors on innate and adaptive immune cells and may contribute to the attenuation of immune responses to tumors. Siglec 9 on neutrophils and Siglec 7 on NK cells are prominent examples of inhibitory Siglecs that can potentially dampen anti-tumor immunity. CD169 is a Siglec that may function as an adhesion molecule and a facilitator of the recognition and internalization of sialic acid decorated apoptotic bodies and exosomes derived from tumors. It can potentially contribute to both the attenuation as well as the facilitation of anti-tumor immunity. Siglecs have been best studied in the tumor context in animal models of cancer. Modulators of Siglec function are likely to be developed and investigated clinically in a cancer context over the next few years.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
25
|
Shao JY, Yin WW, Zhang QF, Liu Q, Peng ML, Hu HD, Hu P, Ren H, Zhang DZ. Siglec-7 Defines a Highly Functional Natural Killer Cell Subset and Inhibits Cell-Mediated Activities. Scand J Immunol 2017; 84:182-90. [PMID: 27312286 DOI: 10.1111/sji.12455] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is an inhibitory receptor expressed on natural killer (NK) cells. In this study, we investigated the relationship between Siglec-7 expression and NK cell functions. Siglec-7 was highly expressed on NK cells and was preferentially expressed by mature NK cells from peripheral blood of healthy adults. Siglec-7(+) NK cells displayed higher levels of activating receptors CD38, CD16, DNAM1, NKp30 and NKp46, but lower levels of inhibitory receptors such as NKG2A and CD158b, compared with Siglec-7(-) NK cells. Functional tests showed that Siglec-7(+) NK cells displayed more CD107a degranulation and IFN-γ production than Siglec-7(-) NK cells. Siglec-7 inhibited NK cell functions when interacting with specific antibodies. These data suggest that Siglec-7 defines a highly functional NK cell subset and suppresses NK cell-mediated functions when cross-linked with specific antibodies.
Collapse
Affiliation(s)
- J-Y Shao
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - W-W Yin
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q-F Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - M-L Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H-D Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - P Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - D-Z Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Prescher H, Frank M, Gütgemann S, Kuhfeldt E, Schweizer A, Nitschke L, Watzl C, Brossmer R. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion. J Med Chem 2017; 60:941-956. [DOI: 10.1021/acs.jmedchem.6b01111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Martin Frank
- Molecular
Structure Analysis Core Facility-W160, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | - Astrid Schweizer
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | | | | |
Collapse
|
27
|
Ohira S, Yasuda Y, Tomita I, Kitajima K, Takahashi T, Sato C, Tanaka H. Synthesis of end-functionalized glycopolymers containing α(2,8) disialic acids via π-allyl nickel catalyzed coordinating polymerization and their interaction with Siglec-7. Chem Commun (Camb) 2017; 53:553-556. [DOI: 10.1039/c6cc07115e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymerization of an allene glycomonomer efficiently provided glycopolymer possessing α(2,8) disialic acids with narrow PDI.
Collapse
Affiliation(s)
- Shuichi Ohira
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1-H-101 Ookayama
- Tokyo 152-8552
- Japan
| | - Yu Yasuda
- Bioscience and Biotechnology Center
- Nagoya University Chikusa
- Nagoya 464-8601
- Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259-G1-9
- Nagatsuta-cho
- Yokohama 226-8502
- Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center
- Nagoya University Chikusa
- Nagoya 464-8601
- Japan
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center
- Nagoya University Chikusa
- Nagoya 464-8601
- Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1-H-101 Ookayama
- Tokyo 152-8552
- Japan
| |
Collapse
|
28
|
Varchetta S, Mele D, Lombardi A, Oliviero B, Mantovani S, Tinelli C, Spreafico M, Prati D, Ludovisi S, Ferraioli G, Filice C, Aghemo A, Lampertico P, Facchetti F, Bernuzzi F, Invernizzi P, Mondelli MU. Lack of Siglec-7 expression identifies a dysfunctional natural killer cell subset associated with liver inflammation and fibrosis in chronic HCV infection. Gut 2016; 65:1998-2006. [PMID: 26674359 DOI: 10.1136/gutjnl-2015-310327] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sialic-acid-binding immunoglobulin-like lectin-7 (Siglec-7) is a natural killer (NK) cell inhibitory receptor associated with NK phenotypic and functional abnormalities in HIV-1 infection. We investigated the significance of NK-expressed and serum soluble Siglec-7 in relation to NK functional ability and parameters of liver necroinflammation and fibrosis in chronic HCV infection. DESIGN NK-expressed and serum Siglec-7 were evaluated in 130 and 166 HCV-infected individuals by flow cytometry and ELISA, respectively. NK cell degranulation and cytokine secretion were determined by flow cytometry. 65 patients with chronic HBV infection, 84 with chronic biliary disorders and 168 healthy donors served as controls. RESULTS Expression of Siglec-7 was significantly decreased on NK cells from HCV-infected and HBV-infected patients and, conversely, serum Siglec-7 was significantly increased in these patients compared with controls. The frequency of Siglec-7pos NK cells was significantly higher at baseline in sustained virological responders to pegylated interferon-α/ribavirin treatment than in non-responders. Activating receptor expression was significantly higher in Siglec-7pos NK cells and was associated with increased degranulation and cytokine secretion compared with Siglec-7neg cells. In chronic HCV infection, there was an inverse correlation between Siglec-7 expression and serum aminotransferases, γ-glutamyl transpeptidase, liver stiffness, aspartate aminotransferase to platelet ratio index and fibrosis-4 scores, and a positive correlation between serum Siglec-7 and the same clinical parameters, including histological staging. CONCLUSIONS These findings identify Siglec-7neg NK cells as a dysfunctional subpopulation associated with severe liver disease in chronic HCV infection.
Collapse
Affiliation(s)
- Stefania Varchetta
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Lombardi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Barbara Oliviero
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Carmine Tinelli
- Statistics and Clinical Epidemiology Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Spreafico
- Department of Transfusion Medicine, Azienda Ospedaliera della Provincia di Lecco, A. Manzoni Hospital, Lecco, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Azienda Ospedaliera della Provincia di Lecco, A. Manzoni Hospital, Lecco, Italy
| | - Serena Ludovisi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giovanna Ferraioli
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Filice
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessio Aghemo
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, Milano, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, Milano, Italy
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, Milano, Italy
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Mario U Mondelli
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Abstract
Cell surface sialosides constitute a central axis of immune modulation that is exploited by tumors to evade both innate and adaptive immune destruction. Therapeutic strategies that target tumor-associated sialosides may therefore potentiate antitumor immunity. Here, we report the development of antibody-sialidase conjugates that enhance tumor cell susceptibility to antibody-dependent cell-mediated cytotoxicity (ADCC) by selective desialylation of the tumor cell glycocalyx. We chemically fused a recombinant sialidase to the human epidermal growth factor receptor 2 (HER2)-specific antibody trastuzumab through a C-terminal aldehyde tag. The antibody-sialidase conjugate desialylated tumor cells in a HER2-dependent manner, reduced binding by natural killer (NK) cell inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, and enhanced binding to the NK-activating receptor natural killer group 2D (NKG2D). Sialidase conjugation to trastuzumab enhanced ADCC against tumor cells expressing moderate levels of HER2, suggesting a therapeutic strategy for cancer patients with lower HER2 levels or inherent trastuzumab resistance. Precision glycocalyx editing with antibody-enzyme conjugates is therefore a promising avenue for cancer immune therapy.
Collapse
|
30
|
Dong J, Wei Y, Ye X, Sun C, Tian Y, Lu M, Du J, Chen Z. Discovery and expression of 3 siglecs-like in Oreochromis niloticus neutrophil, and their interaction with group B streptococcal sialylated capsular polysaccharides. Mol Immunol 2016; 73:158-69. [DOI: 10.1016/j.molimm.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/30/2022]
|
31
|
Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One 2016; 11:e0149520. [PMID: 26926339 PMCID: PMC4771134 DOI: 10.1371/journal.pone.0149520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
Collapse
Affiliation(s)
- Cassidy L. Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Vick P. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Hendrick
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| |
Collapse
|
32
|
Prescher H, Gütgemann S, Frank M, Kuhfeldt E, Watzl C, Brossmer R. Synthesis and biological evaluation of 9- N -oxamyl sialosides as Siglec-7 ligands. Bioorg Med Chem 2015; 23:5915-21. [DOI: 10.1016/j.bmc.2015.06.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 11/26/2022]
|
33
|
Transmembrane Mucin Expression and Function in Embryo Implantation and Placentation. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2015; 216:51-68. [PMID: 26450494 DOI: 10.1007/978-3-319-15856-3_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmembrane mucins (TMs) are extremely large, complex glycoproteins that line the apical surfaces of simple epithelia including those of the female reproductive tract. TMs provide a physical barrier consistent with their role as part of the innate immune system. This barrier function must be overcome in the context of embryo implantation to permit blastocyst attachment. Three major TMs have been identified in uterine epithelia of multiple species: MUC1, MUC4, and MUC16. MUC1 has been found in all species studied to date, whereas expression of MUC4 and MUC16 have been less well studied and may be species specific. The strategies for removing mucins to permit embryo attachment also vary in a species-specific way and include both hormonal suppression of TM gene expression and membrane clearance via cell surface proteases. Studies emerging from the cancer literature indicate that TMs can modulate a surprisingly wide variety of signal transduction processes. Furthermore, various cell surface proteins have been identified that bind either the oligosaccharide or protein motifs of TMs suggesting that these molecules may support cell attachment in some contexts, including trophoblast interactions with cells of the immune system. The intimate association of TMs at sites of embryo-maternal interaction and the varied functions these complex molecules can play make them key players in embryo implantation and placentation processes.
Collapse
|
34
|
Izumi M, Otsuki A, Nishihara M, Okamoto R, Kajihara Y. Chemical synthesis of a synthetic analogue of the sialic acid-binding lectin siglec-7. Chembiochem 2014; 15:2503-7. [PMID: 25277834 DOI: 10.1002/cbic.201402494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 11/09/2022]
Abstract
As a basis for the development of an artificial carbohydrate-binding lectin, we chemically synthesized a domain of siglec-7, a well-characterized sialic-acid-binding lectin. The full polypeptide (127 amino acids) was constructed by sequential native chemical ligation (NCL) of five peptide segments. Because of poor cysteine availability for NCL, cysteine residues were introduced at suitable ligation sites; these cysteine residues were alkylated in order to mimic native glutamine or asparagine residues, or converted to an alanine residue by desulfurization after NCL. After folding the full-length polypeptide, the sialic-acid-binding activity of the synthetic siglec-7 was clearly demonstrated by STD NMR and ELISA experiments. We succeeded in the synthesis of siglec-7 by installing three extra cysteine residues with side-chain modifications and found that these modifications did not affect the binding activity.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)
| | | | | | | | | |
Collapse
|
35
|
Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A 2014; 111:14211-6. [PMID: 25225409 DOI: 10.1073/pnas.1409580111] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Certain pathogenic bacteria are known to modulate the innate immune response by decorating themselves with sialic acids, which can engage the myelomonocytic lineage inhibitory receptor Siglec-9, thereby evading immunosurveillance. We hypothesized that the well-known up-regulation of sialoglycoconjugates by tumors might similarly modulate interactions with innate immune cells. Supporting this hypothesis, Siglec-9-expressing myelomonocytic cells found in human tumor samples were accompanied by a strong up-regulation of Siglec-9 ligands. Blockade of Siglec-9 enhanced neutrophil activity against tumor cells in vitro. To investigate the function of inhibitory myelomonocytic Siglecs in vivo we studied mouse Siglec-E, the murine functional equivalent of Siglec-9. Siglec-E-deficient mice showed increased in vivo killing of tumor cells, and this effect was reversed by transgenic Siglec-9 expression in myelomonocytic cells. Siglec-E-deficient mice also showed enhanced immunosurveillance of autologous tumors. However, once tumors were established, they grew faster in Siglec-E-deficient mice. In keeping with this, Siglec-E-deficient macrophages showed a propensity toward a tumor-promoting M2 polarization, indicating a secondary role of CD33-related Siglecs in limiting cancer-promoting inflammation and tumor growth. Thus, we define a previously unidentified impact of inhibitory myelomonocytic Siglecs in cancer biology, with distinct roles that reflect the dual function of myelomonocytic cells in cancer progression. In keeping with this, a human polymorphism that reduced Siglec-9 binding to carcinomas was associated with improved early survival in non-small-cell lung cancer patients, which suggests that Siglec-9 might be therapeutically targeted within the right time frame and stage of disease.
Collapse
|
36
|
Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, Fass L, Kaur J, Hu K, Shojaei H, Whelan RJ, Patankar MS. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer 2014; 13:129. [PMID: 24886523 PMCID: PMC4046138 DOI: 10.1186/1476-4598-13-129] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022] Open
Abstract
Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a 3-5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. A renewed focus on MUC16 is likely to culminate in novel and more efficient strategies for the detection and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Sachi Horibata
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Joseph Heintz
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ralph Albrecht
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lucas Fass
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Justanjyot Kaur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kevin Hu
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Hadi Shojaei
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Rebecca J Whelan
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
37
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
38
|
Peptide microarrays to probe for competition for binding sites in a protein interaction network. J Proteomics 2013; 89:71-80. [PMID: 23748025 DOI: 10.1016/j.jprot.2013.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
|
39
|
Rillahan CD, Schwartz E, Rademacher C, McBride R, Rangarajan J, Fokin VV, Paulson JC. On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chem Biol 2013; 8:1417-22. [PMID: 23597400 DOI: 10.1021/cb400125w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Siglec family of sialic acid-binding proteins are differentially expressed on white blood cells of the immune system and represent an attractive class of targets for cell-directed therapy. Nanoparticles decorated with high-affinity Siglec ligands show promise for delivering cargo to Siglec-bearing cells, but this approach has been limited by a lack of ligands with suitable affinity and selectivity. Building on previous work employing solution-phase sialoside library synthesis and subsequent microarray screening, we herein report a more streamlined 'on-chip' synthetic approach. By printing a small library of alkyne sialosides and subjecting these to 'on-chip' click reactions, the largest sialoside analogue library to date was generated. Siglec-screening identified a selective Siglec-7 ligand, which when displayed on liposomal nanoparticles, allows for targeting of Siglec-7(+) cells in peripheral human blood. In silico docking to the crystal structure of Siglec-7 provides a rationale for the affinity gains observed for this novel sialic acid analogue.
Collapse
Affiliation(s)
| | | | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am
Mühlenberg 1, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
40
|
Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, Arai Y. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010; 20:1373-9. [PMID: 20663960 DOI: 10.1093/glycob/cwq116] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In renal cell carcinoma (RCC), the presence of higher gangliosides correlates with systematic metastasis. Disialosyl globopentaosylceramide (DSGb5) was identified previously as one of the major gangliosides from RCC tissues. Siglec-7 (sialic acid-binding Ig-like lectin-7), expressed on natural killer (NK) cells as an inhibitory receptor, has a striking preference for internally branched α2,6-linked disialic gangliosides such as DSGb5. To clarify the functional role of DSGb5 in RCC metastases, we have investigated whether DSGb5 expressed on RCC cells can modulate NK cell cytotoxicity in a Siglec-7-dependent manner. The binding activity of RCC cells to Siglec-7-Fc fusion protein was specifically inhibited by anti-DSGb5 monoclonal antibody and transfection of siRNA for ST6GalNAcVI (synthetase of DSGb5). These observations showed that Siglec-7-Fc fusion protein specifically bound to DSGb5 expressed on RCC cells. In contrast, the sialic acid-binding site of Siglec-7 on NK cells was masked by cis interactions with endogenous sialoconjugates at the cell surface, but it could be unmasked by sialidase treatment of the NK cells. Following sialidase treatment of NK cells, NK cell cytotoxicity against RCC cells with high DSGb5 expression was significantly decreased relative to cells with low DSGb5 expression. These findings indicate that such NK cell cytotoxicity against RCC cells could be inhibited by the interaction between Siglec-7 on effecter cells and DSGb5 on target cells. The results of the present study suggest that DSGb5 expressed on RCC cells can downregulate NK cell cytotoxicity in a DSGb5-Siglec-7-dependent manner and that RCC cells with DSGb5 create favorable circumstance for their own survival and metastases.
Collapse
Affiliation(s)
- Yoshihide Kawasaki
- Department of Urology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Hudson SA, Bovin NV, Schnaar RL, Crocker PR, Bochner BS. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6'-sulfated sialyl Lewis x. J Pharmacol Exp Ther 2009; 330:608-12. [PMID: 19458105 PMCID: PMC2713093 DOI: 10.1124/jpet.109.152439] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/18/2009] [Indexed: 01/10/2023] Open
Abstract
The lectin Siglec-8 (sialic acid-binding, immunoglobulin-like lectin), which is selectively expressed on eosinophil surfaces and regulates eosinophil survival, preferentially binds to the glycan 6'-sulfo-sialyl Lewis X (6'-sulfo-sLe(x)). Antibody engagement of Siglec-8 on eosinophils causes their apoptosis, suggesting that engagement of Siglec-8 with its natural glycan ligands in vivo may control allergic inflammation. We report that a soluble synthetic polymer displaying 6'-sulfo-sLe(x) glycan selectively binds to human eosinophils and human embryonic kidney 293 cells expressing Siglec-8. Binding was inhibited by anti-Siglec-8 antibody. In whole blood, eosinophils were the only leukocyte subtype to detectably bind polymeric 6'-sulfo-sLe(x). Interleukin-5-primed eosinophils underwent apoptosis when incubated with either anti-Siglec-8 monoclonal antibody or polymeric 6'-sulfo-sLe(x), although the glycan polymer was less effective. These data demonstrate that a soluble, multivalent glycan selectively binds to human eosinophils and induces their apoptosis in vitro and provide proof-of-concept that such a reagent could be used to selectively target eosinophils.
Collapse
Affiliation(s)
- Sherry A Hudson
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Collapse
Affiliation(s)
- Stephan von Gunten
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224-6821, USA
| | | |
Collapse
|
43
|
Integration of ganglioside GT1b receptor into DPPE and DPPC phospholipid monolayers: an X-ray reflectivity and grazing-incidence diffraction study. Biophys J 2008; 95:3278-86. [PMID: 18599631 DOI: 10.1529/biophysj.107.128538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT(1b)-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT(1b) is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT(1b), the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23 degrees C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT(1b) was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration.
Collapse
|
44
|
Zhuravleva MA, Trandem K, Sun PD. Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol 2007; 375:437-47. [PMID: 18022638 DOI: 10.1016/j.jmb.2007.10.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/22/2007] [Accepted: 10/02/2007] [Indexed: 11/29/2022]
Abstract
Sialic acid (Sia) Ig-like binding lectins are important mediators of recognition and signaling events among myeloid cells. To investigate the molecular mechanism underlying sialic acid Ig-like lectin (Siglec) functions, we determined the crystal structure of the two N-terminal extracellular domains of human myeloid cell inhibitory receptor Siglec-5 (CD170) and its complexes with two sialylated carbohydrates. The native structure revealed an unusual conformation of the CC' ligand specificity loop and a unique interdomain disulfide bond. The alpha(2,3)- and alpha(2,6)-sialyllactose complexed structures showed a conserved Sia recognition motif that involves both Arg124 and a portion of the G-strand in the V-set domain forming beta-sheet-like hydrogen bonds with the glycerol side chain of the Sia. Only few protein contacts to the subterminal sugars are observed and mediated by the highly variable GG' linker and CC' loop. These structural observations, in conjunction with surface plasmon resonance binding assays, provide mechanistic insights into linkage-dependent Siglec carbohydrate recognition and suggest that Siglec-5 and other CD33-related Siglec receptors are more promiscuous in sialoglycan recognition than previously understood.
Collapse
Affiliation(s)
- Marina A Zhuravleva
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | |
Collapse
|
45
|
Karamanska R, Clarke J, Blixt O, Macrae JI, Zhang JQ, Crocker PR, Laurent N, Wright A, Flitsch SL, Russell DA, Field RA. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J 2007; 25:69-74. [PMID: 17574526 DOI: 10.1007/s10719-007-9047-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Plant lectin recognition of glycans was evaluated by SPR imaging using a model array of N-biotinylated aminoethyl glycosides of beta-D-glucose (negative control), alpha-D: -mannose (conA-responsive), beta-D-galactose (RCA(120)-responsive) and N-acetyl-beta-D-: glucosamine (WGA-responsive) printed onto neutravidin-coated gold chips. Selective recognition of the cognate ligand was observed when RCA(120) was passed over the array surface. Limited or no binding was observed for the non-cognate ligands. SPR imaging of an array of 40 sialylated and unsialylated glycans established the binding preference of hSiglec7 for alpha2-8-linked disialic acid structures over alpha2-6-sialyl-LacNAcs, which in turn were recognized and bound with greater affinity than alpha2-3-sialyl-LacNAcs. Affinity binding data could be obtained with as little as 10-20 microg of lectin per experiment. The SPR imaging technique was also able to establish selective binding to the preferred glycan ligand when analyzing crude culture supernatant containing 10-20 microg of recombinant hSiglec7-Fc. Our results show that SPR imaging provides results that are in agreement with those obtained from fluorescence based carbohydrate arrays but with the added advantage of label-free analysis.
Collapse
Affiliation(s)
- Rositsa Karamanska
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Angata T, Tabuchi Y, Nakamura K, Nakamura M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 2007; 17:838-46. [PMID: 17483134 DOI: 10.1093/glycob/cwm049] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Siglecs are vertebrate cell-surface receptors that recognize sialylated glycans. Here we have identified and characterized a novel Siglec, named Siglec-15. Siglec-15 is a type-I transmembrane protein consisting of: (i) two immunoglobulin (Ig)-like domains, (ii) a transmembrane domain containing a lysine residue, and (iii) a short cytoplasmic tail. Siglec-15 is expressed on macrophages and/or dendritic cells of human spleen and lymph nodes. We show that the extracellular domain of Siglec-15 preferentially recognizes the Neu5Acalpha2-6GalNAcalpha- structure. Siglec-15 associates with the activating adaptor proteins DNAX activation protein (DAP)12 and DAP10 via its lysine residue in the transmembrane domain, implying that it functions as an activating signaling molecule. Siglec-15 is the second human Siglec identified to have an activating signaling potential; unlike Siglec-14, however, it does not have an inhibitory counterpart. Orthologs of Siglec-15 are present not only in mammals but also in other branches of vertebrates; in contrast, no other known Siglec expressed in the immune system has been conserved throughout vertebrate evolution. Thus, Siglec-15 probably plays a conserved, regulatory role in the immune system of vertebrates.
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
47
|
Senda M, Ito A, Tsuchida A, Hagiwara T, Kaneda T, Nakamura Y, Kasama K, Kiso M, Yoshikawa K, Katagiri Y, Ono Y, Ogiso M, Urano T, Furukawa K, Oshima S, Furukawa K. Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers. Biochem J 2007; 402:459-70. [PMID: 17123352 PMCID: PMC1863573 DOI: 10.1042/bj20061118] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although disialyl glycosphingolipids such as GD3 and GD2 have been considered to be associated with malignant tumours, whether branched-type disialyl glycosphingolipids show such an association is not well understood. We investigated the sialyltransferases responsible for the biosynthesis of DSGG (disialylgalactosylgloboside) from MSGG (monosialylgalactosylgloboside). Among six GalNAc:alpha2,6-sialyltransferases cloned to date, we focused on ST6GalNAc III, V and VI, which utilize sialylglycolipids as substrates. In vitro enzyme analyses revealed that ST6GalNAc III and VI generated DSGG from MSGG with V(max)/K(m) values of 1.91 and 4.16 respectively. Transfection of the cDNA expression vectors for these enzymes resulted in DSGG expression in a renal cancer cell line. Although both ST6GalNAc III and VI genes were expressed in normal kidney cells, the expression profiles of ST6GalNAc VI among 20 renal cancer cell lines correlated clearly with those of DSGG, suggesting that the sialyltransferase involved in the synthesis of DSGG in the kidney is ST6GalNAc-VI. ST6GalNAc-VI and DSGG were found in proximal tubule epithelial cells in normal kidney tissues, while they were downregulated in renal cancer cell lines and cancer tissues. All these findings indicated that DSGG was suppressed during the malignant transformation of the proximal tubules as a maturation arrest of glycosylation.
Collapse
Affiliation(s)
- Motohiro Senda
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
- †Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Akihiro Ito
- ‡Department of Urology, Tohoku University Graduate School of Medicine, Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Akiko Tsuchida
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tomoko Hagiwara
- §Department of Clinical Research, Nagoya National Hospital, Naka-ku, Nagoya 460-0001, Japan
| | - Tsuguhiro Kaneda
- §Department of Clinical Research, Nagoya National Hospital, Naka-ku, Nagoya 460-0001, Japan
| | - Yoko Nakamura
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Kenji Kasama
- ¶Department of Mass Analysis, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Makoto Kiso
- ∥Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193, Japan
| | - Kazuhiro Yoshikawa
- **Department of Pathology, Aichi Medical School, Nagakute, Aichi 480-1195, Japan
| | - Yoko Katagiri
- ††Department of Developmental Biology, National Research Institute for Child Health and Development, Taishido, Setagaya-ku, Tokyo 154-8567, Japan
| | - Yoshinari Ono
- †Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Manabu Ogiso
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Takeshi Urano
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Keiko Furukawa
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Shinichi Oshima
- †Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- *Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 2006; 20:1964-73. [PMID: 17012248 DOI: 10.1096/fj.06-5800com] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune receptors that show high mutual sequence similarity and have antagonizing signaling properties are called paired receptors, and are believed to fine-tune immune responses. Siglecs are sialic acid-recognizing receptors of the immunoglobulin (Ig) superfamily expressed on immune cells. Human Siglec-5, encoded by SIGLEC5 gene, has four extracellular Ig-like domains and a cytosolic inhibitory motif. We discovered human Siglec-14 with three Ig-like domains, encoded by the SIGLEC14 gene, adjacent to SIGLEC5. Human Siglec-14 has almost complete sequence identity with human Siglec-5 at the first two Ig-like domains, shows a glycan binding preference similar to that of human Siglec-5, and associates with the activating adapter protein DAP12. Thus, Siglec-14 and Siglec-5 appear to be the first glycan binding paired receptors. Near-complete sequence identity of the amino-terminal part of human Siglec-14 and Siglec-5 indicates partial gene conversion between SIGLEC14 and SIGLEC5. Remarkably, SIGLEC14 and SIGLEC5 in other primates also show evidence of gene conversions within each lineage. Evidently, balancing the interactions between Siglec-14, Siglec-5 and their common ligand(s) had selective advantage during the course of evolution. The "essential arginine" critical for sialic acid recognition in both Siglec-14 and Siglec-5 is present in humans but mutated in almost all great ape alleles.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arginine/genetics
- Evolution, Molecular
- Gene Conversion
- Humans
- Lectins/genetics
- Lectins/metabolism
- Membrane Proteins
- Polysaccharides/metabolism
- Primates
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | | | |
Collapse
|
49
|
Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, McVicar DW, Johnston JA. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 2006; 109:1061-8. [PMID: 17008544 DOI: 10.1182/blood-2006-05-023556] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD33 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to alpha-CD33 therapy.
Collapse
Affiliation(s)
- Selinda J Orr
- Infection and Immunity, centre for Cancer Research and Biology, Queens University, Belfast, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Attrill H, Imamura A, Sharma RS, Kiso M, Crocker PR, van Aalten DMF. Siglec-7 undergoes a major conformational change when complexed with the alpha(2,8)-disialylganglioside GT1b. J Biol Chem 2006; 281:32774-83. [PMID: 16895906 DOI: 10.1074/jbc.m601714200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The siglecs are a group of mammalian sialic acid binding receptors expressed predominantly in the immune system. The CD33-related siglecs show complex recognition patterns for sialylated glycans. Siglec-7 shows a preference for alpha(2,8)-disialylated ligands and provides a structural template for studying the key interactions that drive this selectivity. We have co-crystallized Siglec-7 with a synthetic oligosaccharide corresponding to the alpha(2,8)-disialylated ganglioside GT1b. The crystal structure of the complex offers a first glimpse into how this important family of lectins binds the structurally diverse gangliosides. The structure reveals that the C-C' loop, a region implicated in previous studies as driving siglec specificity, undergoes a dramatic conformational shift, allowing it to interact with the underlying neutral glycan core of the ganglioside. The structural data in combination with mutagenesis studies show that binding of the ganglioside is driven by extensive hydrophobic contacts together with key polar interactions and that the binding site structure is complementary to preferred solution conformations of GT1b.
Collapse
Affiliation(s)
- Helen Attrill
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|