1
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Larsen R, Kucharz K, Aydin S, Micael MKB, Choudhury B, Paulchakrabarti M, Lønstrup M, Lin DC, Abeln M, Münster-Kühnel A, Toledo AG, Lauritzen M, Esko JD, Daneman R. Multi-omic analysis reveals the unique glycan landscape of the blood-brain barrier glycocalyx. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.645297. [PMID: 40291667 PMCID: PMC12026896 DOI: 10.1101/2025.04.07.645297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The blood-brain barrier (BBB) glycocalyx is the dense layer of glycans and glycoconjugates that coats the luminal surface of the central nervous system (CNS) vasculature. Despite being the first point of contact between the blood and brain, not much is known about the BBB glycocalyx. Here, we performed a multi-omic investigation of the BBB glycocalyx which revealed a unique glycan landscape characterized by enrichment of sialic acid, chondroitin sulfate, and hyaluronan. We found that the BBB glycocalyx was thicker than glycocalyces in the peripheral vasculature and that hyaluronan was the major contributor to its ultrastructure. Using endothelial RNA sequencing, we found potential genetic determinants for these differences, including BBB enrichment of genes involved in sialic acid addition and peripheral enrichment of Tmem2 and Hyal2, the only known cell-surface hyaluronidases. Glycocalyx degradation and increases in vascular permeability are widely associated with inflammation. However, we found that the BBB glycocalyx remains largely unchanged in neuroinflammation during the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and that its degradation is not sufficient to alter BBB permeability in health. Moreover, we showed that CNS endothelial sialic acid removal delays onset of EAE, indicating that BBB glycocalyx sialic acid may contribute to the progression of neuroinflammation. These findings underscore the unique and robust nature of the BBB glycocalyx and provide targets and tools for future studies into its role in health and neuroinflammation.
Collapse
|
3
|
Opperman C, Majzoobi M, Farahnaky A, Shah R, Van TTH, Ratanpaul V, Blanch EW, Brennan C, Eri R. Beyond soluble and insoluble: A comprehensive framework for classifying dietary fibre's health effects. Food Res Int 2025; 206:115843. [PMID: 40058888 DOI: 10.1016/j.foodres.2025.115843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 05/13/2025]
Abstract
Despite evolving definitions, dietary fibre classifications remain simplistic, often reduced to soluble and insoluble types. This binary system overlooks the complexity of fibre structures and their diverse health effects. Indeed, soluble fibre is not just soluble but has important qualities such as fermentability, attenuating insulin secretion, and lowering serum cholesterol. However, this limited classification fails to account for dietary fibre diversity and predict their full range of physiological effects. This article proposes a holistic classification framework that accounts for different fibre types and can be used to accurately infer their physiological outcomes. This proposed classification framework comprises of five constituents: backbone structure, water-holding-capacity, structural charge, fibre matrix and fermentation rate. This model more accurately captures the structural and functional diversity of dietary fibres, offering a refined approach to predicting their health benefits.
Collapse
Affiliation(s)
- Christo Opperman
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Mahsa Majzoobi
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Asgar Farahnaky
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Rohan Shah
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Thi Thu Hao Van
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Vishal Ratanpaul
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Ewan W Blanch
- CSIRO Agriculture & Food, 671 Sneydes Road, Melbourne, Vic. 3030, Australia
| | - Charles Brennan
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia
| | - Rajaraman Eri
- School of Science, Stem College, RMIT University, Bundoora West, VIC 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Hawthorn, Vic 3122, Australia.
| |
Collapse
|
4
|
Wang ST, Anahtar M, Kim DM, Samad TS, Zhang CM, Patel S, Ko H, Ngambenjawong C, Wang CS, Kirkpatrick JD, Kumar V, Fleming HE, Bhatia SN. Engineering Multiplexed Synthetic Breath Biomarkers as Diagnostic Probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630769. [PMID: 39803471 PMCID: PMC11722243 DOI: 10.1101/2024.12.30.630769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Breath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints. However, their adaptation to breath biopsy has been constrained by the limited availability of orthogonal volatile reporters that are detectable in exhaled breath. Here, we engineer multiplexed breath biomarkers that couple aberrant protease activities to exogenous volatile reporters. We designed novel intramolecular reactions that leverage protease-mediated aminolysis, enabling the sensing of a broad spectrum of proteases, and that each release a unique reporter in breath. This approach was validated in a mouse model of influenza to establish baseline sensitivity and specificity in a controlled inflammatory setting, and subsequently applied to diagnose lung cancer using an autochthonous Alk -mutant model. We show that combining multiplexed reporter signals with machine learning algorithms enables tumor progression tracking, treatment response monitoring, and detection of relapse after 30 minutes. Our multiplexed breath biopsy platform highlights a promising avenue for rapid, point-of-care diagnostics across diverse disease states.
Collapse
|
5
|
Zhao Y, Zheng Z, Zhang Z, Xu Y, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Biashad SA, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle. Nat Commun 2023; 14:8054. [PMID: 38052795 PMCID: PMC10698142 DOI: 10.1038/s41467-023-43623-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yandong Xu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yifei S Lin
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| |
Collapse
|
6
|
Deen MC, Gilormini PA, Vocadlo DJ. Strategies for quantifying the enzymatic activities of glycoside hydrolases within cells and in vivo. Curr Opin Chem Biol 2023; 77:102403. [PMID: 37856901 DOI: 10.1016/j.cbpa.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Within their native milieu of the cell, the activities of enzymes are controlled by a range of factors including protein interactions and post-translational modifications. The involvement of these factors in fundamental cell biology and the etiology of diseases is stimulating interest in monitoring enzyme activities within tissues. The creation of synthetic substrates, and their use with different imaging modalities, to detect and quantify enzyme activities has great potential to propel these areas of research. Here we describe the latest developments relating to the creation of substrates for imaging and quantifying the activities of glycoside hydrolases, focusing on mammalian systems. The limitations of current tools and the difficulties within the field are summarised, as are prospects for overcoming these challenges.
Collapse
Affiliation(s)
- Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
7
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Zhao Y, Zheng Z, Zhang Z, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of High-Molecular-Mass Hyaluronic Acid is Associated with Subterranean Lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539764. [PMID: 37215017 PMCID: PMC10197608 DOI: 10.1101/2023.05.08.539764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.
Collapse
|
9
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 736] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|