1
|
Saadati F, Bahrulolum H, Talebi M, Karimi M, Bozorgchami N, Ghale RA, Zafar S, Aghighi Y, Asiaei E, Tabandeh F. Advances and principles of hyaluronic acid production, extraction, purification, and its applications: A review. Int J Biol Macromol 2025:143839. [PMID: 40318723 DOI: 10.1016/j.ijbiomac.2025.143839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide composed of repeating disaccharide units of N-acetyl-d-glucosamine and D-glucuronic acid. It plays a crucial role in promoting soft tissue growth, elasticity, and scar reduction. The growing demand for HA in pharmaceutical and cosmetic applications has provoked extensive research into diverse production strategies. Current efforts focus on bacterial and yeast fermentation. However, the extraction process presents a significant challenge due to the complex nature of source materials like fermentation broth, which contains numerous components and solutes. Achieving high extraction yields and purity requires careful consideration of extraction techniques. This study provides a comprehensive overview of the primary methodologies employed for HA production, elaborating on the advantages and disadvantages of each approach. Additionally, it highlights recent advancements in HA extraction and purification, with a particular emphasis on bacterial sources and the applications of HA. This review critically evaluates current HA production strategies, identifies key challenges hindering scalability and efficiency, and discusses innovative solutions under development to overcome these limitations.
Collapse
Affiliation(s)
- Fatemeh Saadati
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Karimi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negar Bozorgchami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Almasi Ghale
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shaghayegh Zafar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Aghighi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elaheh Asiaei
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
2
|
Guo L, Wang S, Lian C, He L. Expression and molecular characterization of an intriguing hyaluronan synthase (HAS) from the symbiont " Candidatus Mycoplasma liparidae" in snailfish. PeerJ 2025; 13:e19253. [PMID: 40297469 PMCID: PMC12036578 DOI: 10.7717/peerj.19253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Hyaluronan synthases (HASs) are ubiquitous in living organisms, and the hyaluronic acid (HA) synthesized by them are important to their body and well used in medicine, cosmetics and other fields. HAS from deep-sea creatures has not yet been explored before. The study aims to analyse the characteristics and enzyme kinetics of a novel hyaluronan synthase derived from the symbiont "Candidatus Mycoplasma liparidae" found in deep-sea snailfish (snHAS). Methodology snHAS was over-expressed using His 6 as tag in the study. The sequence alignment was conducted by Cluster W and then the phylogenetic analyse of HASs was performed by Mega 6.0 to investigate the position of snHAS during evolution. K m and V max were detected to study the enzyme kinetics of snHAS wildtype and its mutant. The molecular weight of HA was evaluated by high performance gel permeation chromatography (HPGPC). The cardiolipin was added to investigate whether it had a promoting effect on the snHAS. Results The length of snHAS was 933 bp with an open reading frame (ORF) of 310 amino acids. Unlike other repoted HASs, snHAS had no transmembrane region and was not classified into the currently known Class I or Class II. snHAS could synthesize hyaluronan with lower molecular weights using the substrates of uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and uridine-diphosphate-glucuronic acid (UDP-GlcA) in vitro. The K m values of snHAS were 258 ± 45 µM and 39 ± 5 µM for UDP-GlcNAc and UDP-GlcA, respectively, much lower than those from mice (K m for UDP-GlcA: 55 ± 5 µM; K m for UDP-GlcNAc: 870 ± 60 µM). The k cat/K m values of snHAS were 163.5 s-1 mM-1 and 8.08 s-1 mM-1 for UDP-GlcA and UDP-GlcNAc, respectively. Furthermore, the activity of snHAS was independent of cardiolipin. Conclusions snHAS was a novel HAS based on the characteristics of the animo acid sequence, which could produce low molecular weight of HA with high efficiency. This provides a molecular basis for the biosynthesis of low molecular weight of HA.
Collapse
Affiliation(s)
- Lulu Guo
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shaolu Wang
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Chunang Lian
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Lisheng He
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
3
|
Hu L, Xiao S, Sun J, Wang F, Yin G, Xu W, Cheng J, Du G, Chen J, Kang Z. Regulating cellular metabolism and morphology to achieve high-yield synthesis of hyaluronan with controllable molecular weights. Nat Commun 2025; 16:2076. [PMID: 40021631 PMCID: PMC11871322 DOI: 10.1038/s41467-025-56950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
High-yield biosynthesis of hyaluronan (HA) with controllable molecular weights (MWs) remains challenging due to the poorly understood function of Class I HA synthase (HAS) and the metabolic imbalance between HA biosynthesis and cellular growth. Here, we systematically characterize HAS to identify crucial regions involved in HA polymerization, secretion, and MW control. We construct HAS mutants that achieve complete HA secretion and expand the MW range from 300 to 1400 kDa. By dynamically regulating UDP-glucose 6-dehydrogenase activity and applying an adaptive evolution approach, we recover cell normal growth with increased metabolic capacities. Final titers and productivities for high MW HA (500 kDa) and low MW HA (10 kDa) reach 45 g L-1 and 105 g L-1, 0.94 g L-1 h-1 and 1.46 g L-1 h-1, respectively. Our findings advance our understanding of HAS function and the interplay between cell metabolism and morphology, and provide a shape-guided engineering strategy to optimize microbial cell factories.
Collapse
Affiliation(s)
- Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Sen Xiao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jieyu Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Faying Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Wenjie Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jianhua Cheng
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, China.
| |
Collapse
|
4
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
5
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
6
|
Górniak I, Stephens Z, Erramilli SK, Gawda T, Kossiakoff AA, Zimmer J. Structural insights into translocation and tailored synthesis of hyaluronan. Nat Struct Mol Biol 2025; 32:161-171. [PMID: 39322765 PMCID: PMC11750622 DOI: 10.1038/s41594-024-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.
Collapse
Affiliation(s)
- Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachery Stephens
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Kim M, Jung MY, Lee DY, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024; 16:1604. [PMID: 39771582 PMCID: PMC11680071 DOI: 10.3390/pharmaceutics16121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues. By focusing on these unique functionalities, this review highlights the potential of HA-based systems to revolutionize ocular treatment. Various fabrication techniques for HA-based ocular drug delivery systems, including hydrogels, nanoparticles, and microneedles, are discussed, highlighting their respective advantages and limitations. Additionally, this review explores the clinical applications of HA-based devices in treating a range of ocular diseases, such as dry eye syndrome, glaucoma, retinal disorders, and ocular infections. By comparing the efficacy and safety profiles of these devices with traditional ocular drug delivery methods, this review aims to provide a comprehensive understanding of the potential benefits and challenges associated with HA-based systems. Moreover, this review discusses current limitations and future directions in the field, such as the need for standardized fabrication protocols, long-term biocompatibility studies, and large-scale clinical trials. The insights and advancements presented in this review aim to guide future research and development efforts, ultimately enhancing the effectiveness of ocular drug delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Do-Yeon Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - So Min Ahn
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Gyeong Min Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
8
|
Zhu K, Han Y, Jian Y, Jiang G, Lu D, Liu Z. Anionic cardiolipin stabilizes the transmembrane region of hyaluronan synthase and promotes catalysis-relevant dynamics. Arch Biochem Biophys 2024; 761:110165. [PMID: 39332577 DOI: 10.1016/j.abb.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan essential for cellular processes and finding increasingly applications in medicine, pharmaceuticals, and cosmetics. While membrane-integrated Class I hyaluronan synthase (HAS) catalyzes HA synthesis in most organisms, the molecular mechanisms by which HAS-lipid interactions impact HAS catalysis remain unclear. This study employed coarse-grained molecular dynamics simulation combined with dimensionality reduction to uncover the interplay between lipids and Streptococcus equisimilis HAS (SeHAS). A minimum of 67 % cardiolipin is necessary for HA synthesis, as determined through simulations using gradient-composed membranes. The anionic cardiolipin stabilizes the cationic transmembrane regions of SeHAS and thereby maintains its conformation. Moreover, the highly dynamic cardiolipin is required to modulate the catalysis-relevant motions in HAS and thus facilitate HA synthesis. These findings provide molecular insights essential not only for understanding the physiological functions of HAS, but also for the development of cell factories and enzyme catalysts for HA production.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yilei Han
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yupei Jian
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Diannan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
DeAngelis PL. Chemoenzymatic synthesis with the Pasteurella hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers. PROTEOGLYCAN RESEARCH 2024; 2:e70000. [PMID: 39735554 PMCID: PMC11673988 DOI: 10.1002/pgr2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 12/31/2024]
Abstract
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] n ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Pasteurella multocida Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (n = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (n = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
10
|
Stancanelli E, Green DE, Arnold K, Zhang J, Kong D, DeAngelis PL, Liu J. Utility of Authentic 13C-Labeled Disaccharide to Calibrate Hyaluronan Content Measurements by LC-MS. PROTEOGLYCAN RESEARCH 2024; 2:e70010. [PMID: 39583875 PMCID: PMC11582344 DOI: 10.1002/pgr2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Hyaluronan (hyaluronic acid, HA), a key glycosaminoglycan in the extracellular matrix, plays crucial roles in various physiological and pathological processes, including development, tissue hydration, inflammation, and tumor progression. Traditional methods for HA quantification, such as ELISA-like assays, often have limitations in sensitivity and specificity, particularly for lower molecular weight HA. In this work, we introduce a coupled liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method that employs a chemoenzymatically synthesized 13C-labeled lyase-derived authentic HA disaccharide calibrant for quantification of HA at the nanogram level. The method was validated against three HA polysaccharides with the sizes of ~33, 210, and 540 kDa. We applied this quantification technique to mouse tissues and plasma from both healthy and acetaminophen-induced acute liver injury mice. Our data revealed a ~75-fold increase in HA concentration in the liver of acetaminophen-injured mice with a concomitant depletion from plasma. Overall, our method offers a robust, universal, and highly sensitive tool for HA analysis in diverse biological samples that will advance the investigation of the roles of this polysaccharide in human disease conditions.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Dixy E. Green
- Department of Biochemistry and PhysiologyThe University of Oklahoma Health Science CenterOklahoma CityOklahomaUSA
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jianxiang Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Deyu Kong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Paul L. DeAngelis
- Department of Biochemistry and PhysiologyThe University of Oklahoma Health Science CenterOklahoma CityOklahomaUSA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Matalqah S, Lafi Z, Asha SY. Hyaluronic Acid in Nanopharmaceuticals: An Overview. Curr Issues Mol Biol 2024; 46:10444-10461. [PMID: 39329973 PMCID: PMC11431703 DOI: 10.3390/cimb46090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Hyaluronic acid (HA) is a naturally occurring, long, unbranched polysaccharide that plays a critical role in maintaining skin structure and hydration. Its unique properties make it a valuable component in the field of nanopharmaceuticals. The combination of HA into nanopharmaceuticals enhances its ability to interact with various therapeutic agents, improving the delivery and efficacy of drugs. HA-based nanoparticles, including solid lipid nanoparticles, and polymeric nanogels, offer controlled release, enhanced stability, and targeted delivery of therapeutic agents. These innovations significantly improve therapeutic outcomes and reduce side effects, making HA an essential tool in modern medicine. In general, HA-modified liposomes enhance drug encapsulation and targeting, while HA-modified solid lipid nanoparticles (SLNs) provide a solid lipid core for drug encapsulation, offering controlled release and stability. This article provides an overview of the potential applications and recent advancements of HA in nanopharmaceuticals, emphasizing its significant impact on the evolving field of targeted drug delivery and advanced therapeutic strategies. By delving into the unique properties of HA and its compatibility with various therapeutic agents, this review underscores the promising potential of HA in revolutionizing nanopharmaceuticals.
Collapse
Affiliation(s)
- Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
12
|
Sommerfeld IK, Dälken EM, Elling L, Pich A. Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase. Macromol Biosci 2024; 24:e2400075. [PMID: 39018489 DOI: 10.1002/mabi.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Indexed: 07/19/2024]
Abstract
Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross-linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His6-tagged hyaluronan synthase from Pasteurella multocida (PmHAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni2+, Co2+, Mn2+, Mg2+, and Fe2+) via metal affinity binding. The results indicate that using Ni2+ yields the microgels with the highest enzyme uptake and HA formation. The immobilized PmHAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized PmHAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing PmHAS stability through protein engineering.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Esther Maria Dälken
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, The Netherlands
| |
Collapse
|
13
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
14
|
Erkanli ME, Kang TK, Kirsch T, Turley EA, Kim JR, Cowman MK. The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations. PROTEOGLYCAN RESEARCH 2024; 2:e70001. [PMID: 39290872 PMCID: PMC11404675 DOI: 10.1002/pgr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| | - Eva A Turley
- Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada
- Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| |
Collapse
|
15
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|