1
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
2
|
Yao Y, Tang H, Ma H, Liu Z, Huang J, Yang X, Zhao L, Yuan Q. Chondroitin Sulfate/Dermatan Sulfate Hybrid Chains from Swim Bladder: Isolation, Structural Analysis, and Anticoagulant Activity. Mar Drugs 2023; 22:9. [PMID: 38276647 PMCID: PMC10817686 DOI: 10.3390/md22010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Glycosaminoglycans (GAGs) with unique structures from marine animals show intriguing pharmacological activities and negligible biological risks, providing more options for us to explore safer agents. The swim bladder is a tonic food and folk medicine, and its GAGs show good anticoagulant activity. In this study, two GAGs, CMG-1.0 and GMG-1.0, were extracted and isolated from the swim bladder of Cynoscion microlepidotus and Gadus morhua. The physicochemical properties, precise structural characteristics, and anticoagulant activities of these GAGs were determined for the first time. The analysis results of the CMG-1.0 and GMG-1.0 showed that they were chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains with molecular weights of 109.3 kDa and 123.1 kDa, respectively. They were mainly composed of the repeating disaccharide unit of -{IdoA-α1,3-GalNAc4S-β1,4-}- (DS-A). The DS-B disaccharide unit of -{IdoA2S-α1,3-GalNAc4S-β1,4-}- also existed in both CMG-1.0 and GMG-1.0. CMG-1.0 had a higher proportion of CS-O disaccharide unit -{-GlcA-β1,3-GalNAc-β1,4-}- but a lower proportion of CS-E disaccharide unit -{-GlcA-β1,3-GalNAc4S6S-β1,4-}- than GMG-1.0. The disaccharide compositions of the GAGs varied in a species-specific manner. Anticoagulant activity assay revealed that both CMG-1.0 and GMG-1.0 had potent anticoagulant activity, which can significantly prolong activated partial thromboplastin time. GMG-1.0 also can prolong the thrombin time. CMG-1.0 showed no intrinsic tenase inhibition activity, while GMG-1.0 can obviously inhibit intrinsic tenase with EC50 of 58 nM. Their significantly different anticoagulant activities may be due to their different disaccharide structural units and proportions. These findings suggested that swim bladder by-products of fish processing of these two marine organisms may be used as a source of anticoagulants.
Collapse
Affiliation(s)
- Yue Yao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hao Tang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Haiqiong Ma
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Zidong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Jinwen Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Xiufen Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Qingxia Yuan
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| |
Collapse
|
3
|
Tan K, Lu SY, Tan K, Ransangan J, Cai X, Cheong KL. Bioactivity of polysaccharides derived from bivalves. Int J Biol Macromol 2023; 250:126096. [PMID: 37541476 DOI: 10.1016/j.ijbiomac.2023.126096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Bivalves have high diversity, widely distributed in various aquatic environments, including saltwater, brackish water and freshwater. Bivalves are known to rich in polysaccharides and have wide applications in functional foods, pharmaceuticals, and industrial research. Despite many relevant reports are available, the information is poorly organized. Therefore, in this study, we conducted a comprehensive scientific review on the potential bioactivity of polysaccharides derived from bivalves. In general, the polysaccharides derived from bivalves possess various bioactive properties, including anticancer, antioxidant, anticoagulant and immunomodulatory activities. The bioactivity of these biomolecules highly depends on the bivalve species, extraction methods, purification methods, dosages, etc. The information in this study can provide an overview of the bioactivities of bivalve polysaccharides. This is very useful to be used as a guide for identifying the health benefits of polysaccharides derived from different bivalve species.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Si-Yuan Lu
- Guangdong Province Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Xiaohui Cai
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Sarbu M, Ica R, Sharon E, Clemmer DE, Zamfir AD. Glycomics by ion mobility tandem mass spectrometry of chondroitin sulfate disaccharide domain in biglycan. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4908. [PMID: 36799777 DOI: 10.1002/jms.4908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.
Collapse
Affiliation(s)
- Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
- Department of Physics, West University of Timisoara, Timisoara, 300223, Romania
| | - Edie Sharon
- Department of Chemistry, The College of Arts & Science, Indiana University, Bloomington, Indiana, USA
| | - David E Clemmer
- Department of Chemistry, The College of Arts & Science, Indiana University, Bloomington, Indiana, USA
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
- Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, 310330, Romania
| |
Collapse
|
5
|
The structures and applications of microbial chondroitin AC lyase. World J Microbiol Biotechnol 2022; 38:199. [PMID: 35996038 DOI: 10.1007/s11274-022-03395-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
As an important glycosaminoglycan hydrolase, chondroitin lyases can hydrolyze chondroitin sulfate (CS) and release disaccharides and oligosaccharides. They are further divided into chondroitin AC, ABC, and B lyases according to their spatial structure and substrate specificity. Chondroitin AC lyase can hydrolyze chondroitin sulfate A (CS-A), chondroitin sulfate C (CS-C), and hyaluronic acid (HA), making it an essential biocatalyst for the preparation of low molecular weight chondroitin sulfate, analysis of the structure of the chondroitin sulfate, treatment of spinal cord injury, and purification of heparin. This paper provides an overview of reported chondroitin AC lyases, including their properties and the challenges faced in industrial applications. Up to now, although many attempts have been adopted to improve the enzyme properties, the most important factors are still the low activity and stability. The relations between the stability of the enzyme and the spatial structure were also summarized and discussed. Also perspectives for remodeling the enzymes with protein engineering are included.
Collapse
|
6
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
7
|
Oral administration of dermatan sulphate reduces venous thrombus formation in vivo: potential use as a formulation for venous thromboembolism. Inflammopharmacology 2020; 29:525-535. [PMID: 33230702 DOI: 10.1007/s10787-020-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
Dermatan sulphate (DS) is a sulphated polysaccharide that displays complexity in constituent sulphated disaccharides and interacts with proteins and signalling molecules to modulate numerous biological processes, including inhibition of the coagulation cascade and regulation of blood clotting and fibrinolysis. This study shows the antithrombotic and anticoagulant effects of DS prepared from bovine collagen waste liquor following oral and intravenous administrations in a deep vein thrombosis (DVT) rabbit model. In vitro, the prothrombin time, activated partial thromboplastin time, and thrombin citrated plasma clotting assays revealed that bovine DS had strong antithrombotic and anticoagulant effects comparable to low-molecular-weight heparin [Clexane® (enoxaparin sodium)]. In a DVT rabbit model, animals received intravenous and oral administrations of bovine DS and Clexane® providing further evidence that both agents had strong antithrombotic and anticoagulant effects by significantly reducing or preventing clot formation. Thromboelastography (TEG) assays revealed further that both bovine DS and Clexane® substantially prolonged the clotting time of recalcified citrated whole blood, but only bovine DS could retain clot strength suggesting that bovine DS had less effect on platelet-fibrin interactions. In conclusion, this is the first report that oral administration of DS from bovine collagen waste liquor reduces experimental venous thrombus formation warranting further research into bovine DS as an oral antithrombotic therapeutic.
Collapse
|
8
|
Vasconcelos AA, Pomin VH. Marine Carbohydrate-Based Compounds with Medicinal Properties. Mar Drugs 2018; 16:E233. [PMID: 29987239 PMCID: PMC6070937 DOI: 10.3390/md16070233] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
The oceans harbor a great diversity of organisms, and have been recognized as an important source of new compounds with nutritional and therapeutic potential. Among these compounds, carbohydrate-based compounds are of particular interest because they exhibit numerous biological functions associated with their chemical diversity. This gives rise to new substances for the development of bioactive products. Many are the known applications of substances with glycosidic domains obtained from marine species. This review covers the structural properties and the current findings on the antioxidant, anti-inflammatory, anticoagulant, antitumor and antimicrobial activities of medium and high molecular-weight carbohydrates or glycosylated compounds extracted from various marine organisms.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
9
|
Cao C, Song S, Wu S, Ai C, Liu H, Lu J, Wen C. Characterization and comparison of acidic polysaccharide populations in Atrina pectinata individuals. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1438454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyang Cao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, U.S.A
| | - Sufeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chunqing Ai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Haiman Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Jiaojiao Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Chengrong Wen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
10
|
Okamoto Y, Higashi K, Linhardt RJ, Toida T. Comprehensive analysis of glycosaminoglycans from the edible shellfish. Carbohydr Polym 2017; 184:269-276. [PMID: 29352919 DOI: 10.1016/j.carbpol.2017.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022]
Abstract
We have previously reported that the keratan sulfate (KS) disaccharide was branched to the C-3 position of glucuronate in chondroitin sulfate (CS)-E derived from the Mactra chinensis. We carried out the comprehensive disaccharide analysis of GAGs from 10 shellfish, Ruditapes philippinarum, Scapharca broughtonii, Mizuhopecten yessoensis, Turbo cornutus, Crassostrea nippona, Corbicula japonica, Mytilus galloprovincialis, Neptunea intersculpta, Pseudocardium sachalinense and Crassostrea gigas, to better understand the glycan structures in marine organisms. The contents of CS, heparan sulfate and hyaluronic acid and their compositions depend on the species of shellfish. Interestingly, a peak corresponding to a pentasaccharide containing KS disaccharide was observed when GAGs from T. cornutus was treated with chondroitinase (Chase) ACII but not Chase ABC. In addition, unidentified peaks were also observed when CS derived from R. philippinarum, S. broughtonii were treated with Chase ACII. These results suggest the presence of additional unidentified structure of CS in these shellfish.
Collapse
Affiliation(s)
- Yusuke Okamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
11
|
Wang LC, Di LQ, Li JS, Hu LH, Cheng JM, Wu H. Elaboration in type, primary structure, and bioactivity of polysaccharides derived from mollusks. Crit Rev Food Sci Nutr 2017; 59:1091-1114. [DOI: 10.1080/10408398.2017.1392289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling Chong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| | - Liu Qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Jun Song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Li Hong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, P.R. China
| | - Jian Ming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine Nanjing, P.R. China
| |
Collapse
|
12
|
Liu B, Liu H, Ai C, Zhu Z, Wen C, Song S, Zhu B. Distribution of uronic acid-containing polysaccharides in 5 species of shellfishes. Carbohydr Polym 2017; 164:195-199. [DOI: 10.1016/j.carbpol.2017.01.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/28/2022]
|
13
|
Liu B, Lu J, Ai C, Zhang B, Guo L, Song S, Zhu B. Quick characterization of uronic acid-containing polysaccharides in 5 shellfishes by oligosaccharide analysis upon acid hydrolysis. Carbohydr Res 2016; 435:149-155. [DOI: 10.1016/j.carres.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
|
14
|
Structural characterization and anti-inflammatory activity of two novel polysaccharides from the sea squirt, Ascidiella aspersa. Pulm Pharmacol Ther 2016; 40:69-79. [DOI: 10.1016/j.pupt.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/18/2023]
|
15
|
Extraction, purification and characterisation of dermatan sulphate from bovine collagen waste liquor. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zhang CH, Yun YH, Zhang ZM, Liang YZ. Simultaneous determination of neutral and uronic sugars based on UV–vis spectrometry combined with PLS. Int J Biol Macromol 2016; 87:290-4. [DOI: 10.1016/j.ijbiomac.2016.02.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
17
|
Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster ( Nephrops norvegicus ) shell. Biomed Pharmacother 2016; 80:322-330. [DOI: 10.1016/j.biopha.2016.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
|
18
|
Cao J, Wen C, Lu J, Teng N, Song S, Zhu B. Characterization of acidic polysaccharides from the mollusks through acid hydrolysis. Carbohydr Polym 2015; 130:268-74. [DOI: 10.1016/j.carbpol.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022]
|
19
|
Comparison of polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MSn analysis upon acid hydrolysis. Carbohydr Res 2015; 415:48-53. [DOI: 10.1016/j.carres.2015.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 11/22/2022]
|
20
|
Higashi K, Takeuchi Y, Mukuno A, Tomitori H, Miya M, Linhardt RJ, Toida T. Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca. PLoS One 2015; 10:e0120860. [PMID: 25803296 PMCID: PMC4372294 DOI: 10.1371/journal.pone.0120860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022] Open
Abstract
Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the immediate vicinity of the IdoA-rich domain.
Collapse
Affiliation(s)
- Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiki Takeuchi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ann Mukuno
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hideyuki Tomitori
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Masaki Miya
- Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan
| | - Robert J. Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, United States of America
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- * E-mail:
| |
Collapse
|
21
|
Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone–labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc 2014; 9:541-58. [DOI: 10.1038/nprot.2014.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Mannello F, Maccari F, Ligi D, Canale M, Galeotti F, Volpi N. Characterization of oversulfated chondroitin sulfate rich in 4,6-O-disulfated disaccharides in breast cyst fluids collected from human breast gross cysts. Cell Biochem Funct 2013; 32:344-50. [DOI: 10.1002/cbf.3022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Matteo Canale
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
23
|
Ramachandra R, Namburi RB, Ortega-Martinez O, Shi X, Zaia J, Dupont ST, Thorndyke MC, Lindahl U, Spillmann D. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling. Glycobiology 2013; 24:195-207. [PMID: 24253764 DOI: 10.1093/glycob/cwt100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.
Collapse
Affiliation(s)
- Rashmi Ramachandra
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Flangea C, Petrescu AJ, Seidler DG, Munteanu CVA, Zamfir AD. Identification of an unusually sulfated tetrasaccharide chondroitin/dermatan motif in mouse brain by combining chip-nanoelectrospray multistage MS2-MS4and high resolution MS. Electrophoresis 2013; 34:1581-92. [DOI: 10.1002/elps.201200704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Daniela G. Seidler
- Institute for Physiological Chemistry and Pathobiochemistry; University of Münster; Münster; Germany
| | | | | |
Collapse
|
25
|
Flangea C, Sisu E, Seidler DG, Zamfir AD. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry. Anal Biochem 2012; 420:155-62. [DOI: 10.1016/j.ab.2011.08.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/14/2023]
|
26
|
Zhang Y, Wang Z, Zhang X, Zhou W, Huang L. One-pot fluorescent labeling of saccharides with fluorescein-5-thiosemicarbazide for imaging polysaccharides transported in living cells. Carbohydr Res 2011; 346:2156-64. [DOI: 10.1016/j.carres.2011.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
|
27
|
Zhang Y, Zhang P, Wang Z, Huang L. AN INNOVATIVE DERIVATIZATION METHOD FOR SIMULTANEOUS DETERMINATION OF URONIC ACIDS AND NEUTRAL AND AMINO SUGARS IN COEXISTING SAMPLES BY HPLC-ESI-MS/MS2. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.579216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ying Zhang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Ping Zhang
- b Chemistry and Chemical Engineering School , Xianyang Normal University , Xianyang, China
| | - Zhongfu Wang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Linjuan Huang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| |
Collapse
|
28
|
Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: Comparative biochemical study. Commun Integr Biol 2011; 4:150-8. [PMID: 21655428 DOI: 10.4161/cib.4.2.14547] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans, a major component of the extracellular matrix molecules in animal tissues, play important roles in various physiological events. Glycosaminoglycans are found in not only vertebrates but also many invertebrates, implying a conserved function in the animal kingdom. Here, we discuss the analysis of glycosaminoglycans in 11 invertebrate phyla focusing on structure as well as physiological functions elucidated in model organisms. Various sulfated structures of heparan sulfate are widely distributed from very primitive organisms to humans, indicating an involvement in fundamental biological processes. By contrast, chondroitin/dermatan sulfate from lower organisms is limited in its structural complexity and often associated with a particular function. The presence of hyaluronic acid outside of vertebrates has been reported only in a mollusk.
Collapse
Affiliation(s)
- Shuhei Yamada
- Laboratory of Proteoglycan Signaling and Therapeutics; Faculty of Advanced Life Science; Graduate School of Life Science; Hokkaido University; Sapporo, Japan
| | | | | |
Collapse
|
29
|
Zamfir AD, Flangea C, Sisu E, Seidler DG, Peter-Katalinić J. Combining size-exclusion chromatography and fully automated chip-based nanoelectrospray quadrupole time-of-flight tandem mass spectrometry for structural analysis of chondroitin/dermatan sulfate in human decorin. Electrophoresis 2011; 32:1639-46. [PMID: 21647927 DOI: 10.1002/elps.201100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/07/2022]
Abstract
Chondroitin/dermatan sulfate (CS/DS) chain of decorin (DCN) from human skin fibroblasts (HSk) was released by reductive β-elimination reaction and digested with chondroitin AC I lyase. Enzymatic hydrolysis mixture of CS/DS chains was separated by size-exclusion chromatography (SEC). Collected octasaccharide fraction was subjected to fully automated chip-based nanoelectrospray (nanoESI) quadrupole time-of-flight (QTOF) MS and tandem MS (MS/MS). MS of human skin fibroblasts DCN CS/DS displayed a high complexity due to the large variety of glycoforms, which under chip-nanoESI MS readily ionized to form multiply charged ions. Except for the regularly tetrasulfated octasaccharide, the investigated fraction contained four additional octasaccharides of atypical sulfation status. Two new oversulfated glycoforms and two undersulfated species were identified. Remarkably, the series of decasaccharides discovered in the same SEC pool was found to encompass a trisulfated and a novel hexasulfated [4,5-Δ-GlcAGalNAc(IdoAGalNAc)⁴] species. MS/MS by collision-induced dissociation (CID) on the [M-4H]⁴ ion corresponding to the previously not reported [4,5-Δ-GlcAGalNAc(IdoAGalNAc)₃](5S) corroborated for a novel motif in which three N-acetylgalactosamine (GalNAc) moieties are monosulfated, 4,5-Δ-GlcA and the first IdoA from the non-reducing end bear one sulfate group each, while the second N-acetylgalactosamine from the reducing end is unsulfated.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Arad, Romania.
| | | | | | | | | |
Collapse
|
30
|
Coppa GV, Buzzega D, Zampini L, Maccari F, Santoro L, Galeotti F, Galeazzi T, Gabrielli O, Volpi N. Plasmatic and Urinary Glycosaminoglycans Characterization in Mucopolysaccharidosis II Patient Treated with Enzyme-Replacement Therapy with Idursulfase. JIMD Rep 2011; 4:79-90. [DOI: 10.1007/8904_2011_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 10/15/2022] Open
|
31
|
High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc 2010; 5:993-1004. [PMID: 20448545 DOI: 10.1038/nprot.2010.48] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosaminoglycans (GAGs) have proven to be very difficult to analyze and characterize because of their high negative charge density, polydispersity and sequence heterogeneity. As the specificity of the interactions between GAGs and proteins results from the structure of these polysaccharides, an understanding of GAG structure is essential for developing a structure-activity relationship. Electrospray ionization (ESI) mass spectrometry (MS) is particularly promising for the analysis of oligosaccharides chemically or enzymatically generated by GAGs because of its relatively soft ionization capacity. Furthermore, on-line high-performance liquid chromatography (HPLC)-MS greatly enhances the characterization of complex mixtures of GAG-derived oligosaccharides, providing important structural information and affording their disaccharide composition. A detailed protocol for producing oligosaccharides from various GAGs, using controlled, specific enzymatic or chemical depolymerization, is presented, together with their HPLC separation, using volatile reversed-phase ion-pairing reagents and on-line ESI-MS structural identification. This analysis provides an oligosaccharide map together with sequence information from a reading frame beginning at the nonreducing end of the GAG chains. The preparation of oligosaccharides can be carried out in 10 h, with subsequent HPLC analysis in 1-2 h and HPLC-MS analysis taking another 2 h.
Collapse
|
32
|
|
33
|
Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans. Amino Acids 2010; 41:235-56. [PMID: 20632047 DOI: 10.1007/s00726-010-0682-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/29/2010] [Indexed: 12/16/2022]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are special types of glycosaminoglycan (GAG) oligosaccharides able to regulate vital biological functions that depend on precise motifs of their constituent hexose sequences and the extent and location of their sulfation. As a result, the need for better understanding of CS/DS biological role called for the elaboration and application of straightforward strategies for their composition and structure elucidation. Due to its high sensitivity, reproducibility, and the possibility to rapidly generate data on fine CS/DS structure determinants, mass spectrometry (MS) based on either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) brought a major progress in the field. Here, modern developments in MS of CS/DS GAGs are gathered in a critical review covering the past 5 years. The first section is dedicated to protocols for CS/DS extraction from parent proteoglycan, digestion, and purification that are among critical prerequisites of a successful MS experiment. The second part highlights several MALDI MS aspects, the requirements, and applications of this ionization method to CS/DS investigation. An ample chapter is devoted to ESI MS strategies, which employ either capillary- or advanced chip-based sample infusion in combination with multistage MS (MS(n)) using either collision-induced (CID) or electron detachment dissociation (EDD). At last, the potential of two versatile separation techniques, capillary electrophoresis (CE), and liquid chromatography (LC) in off- and/or on-line coupling with ESI MS and MS(n), is discussed, alongside an assessment of particular buffer/solvent conditions and instrumental parameters required for CS/DS mixture separation followed by on-line mass analysis of individual components.
Collapse
|
34
|
Coppa GV, Buzzega D, Zampini L, Maccari F, Galeazzi T, Pederzoli F, Gabrielli O, Volpi N. Effect of 6 years of enzyme replacement therapy on plasma and urine glycosaminoglycans in attenuated MPS I patients. Glycobiology 2010; 20:1259-73. [DOI: 10.1093/glycob/cwq088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal Biochem 2009; 397:12-23. [PMID: 19769935 DOI: 10.1016/j.ab.2009.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 11/23/2022]
Abstract
In this study, we developed an on-line reverse-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) separation and structural characterization of hyaluronan (HA)/chondroitin sulfate (CS)/dermatan sulfate (DS) disaccharides released by enzymatic treatment and derivatized with 2-aminoacridone (AMAC), providing a high-resolution system also applicable by using a further fluorimetric detector (Fp) before ESI-MS spectral acquisition. Isomeric nonsulfated HA and CS/DS disaccharides, isomeric monosulfated and isomeric disulfated CS/DS disaccharides, and the trisulfated species were distinctly separated and unambiguously identified by their retention times and mass spectra in negative ionization mode. In general, no multiply charged ions were detected even for highly charged disaccharides, but the presence of desulfonated products for highly sulfated species due to the relative instability of sulfo groups was observed. RP-HPLC-ESI-MS of each AMAC disaccharide was found to be linear from 3 to 500 ng with very high coefficient of correlation values due to the high efficiency of separation and the sharp outline of the peaks. Various CS/DS samples were characterized for disaccharide composition, and minor oligomer species identified as GalNAcSO(4) at the nonreducing end of chains was observed as a common component of these macromolecules. Furthermore, purified endogenous normal human plasma CS disaccharides were also evaluated by means of RP-HPLC-(Fp)-ESI-MS.
Collapse
|