1
|
Caillava AJ, Melli LJ, Landoni M, Landivar SM, Chinen I, Couto AS, Rivas M, Ugalde JE, Comerci DJ, Ciocchini AE. Development of a set of bacterial engineered glycoconjugates as novel serogroup-specific antigens for the serodiagnosis of Escherichia coli O26, O111, O103 and O45 infections associated to hemolytic uremic syndrome. Microb Cell Fact 2025; 24:116. [PMID: 40394600 PMCID: PMC12093740 DOI: 10.1186/s12934-025-02694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/13/2025] [Indexed: 05/22/2025] Open
Abstract
Hemolytic uremic syndrome associated to Shiga toxin-producing Escherichia coli infection (STEC-HUS) is a life-threatening condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. Among STEC, E. coli O157:H7 is the dominant serotype related with human disease worldwide; however, a subset of STEC non-O157 serotypes -named the "Big-Six"- that include the E. coli serogroups O145, O121, O26, O111, O103 and O45 became of a great concern for their potential to cause HUS. Previously, we have demonstrated that serological tests based on bacterial engineered glycoconjugates developed by exploiting the Campylobacter jejuni N-glycosylation machinery, notably increases the association rate of HUS to O157, O145 and O121 STEC infections. In this work, we developed the recombinant glycoproteins O26-AcrA, O111-AcrA, O103-AcrA and O45-AcrA by co-expressing in E. coli the gene cluster required for the synthesis of the O polysaccharide corresponding to each serogroup, the C. jejuni oligosaccharyltransferase (OTase) PglB, and the carrier protein AcrA. The glycans attached to AcrA in the produced and purified glycoconjugates were characterized by mass spectrometry. The glycoconjugates were evaluated as antigens for detection of IgM antibodies against the O polysaccharide of the lipopolysaccharide of O26, O111 and O103 STEC strains in human serum samples. Our results demonstrate that O26-AcrA, O111-AcrA and O103-AcrA allow a clear discrimination between negative and positive samples obtained from patients with HUS associated to O26, O111 and O103 STEC infections. Additionally, these novel antigens are serospecific allowing E. coli serogroup identification which may contribute to the epidemiological surveillance of STEC-HUS patients and their contacts.
Collapse
Affiliation(s)
- Ana J Caillava
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Luciano J Melli
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Malena Landoni
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Stella Maris Landivar
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Isabel Chinen
- Infectious Hazard Management Unit, Public Health Department, Pan American Health Organization, Washington, USA
| | - Alicia S Couto
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marta Rivas
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Inmunova SA, Buenos Aires, Argentina
| | - Juan E Ugalde
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Diego J Comerci
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Escuela de Bio y Nanotecnologías (EByN), Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kurzylewska M, Turska-Szewczuk A, Dworaczek K, Bomba A, Drzewiecka D, Pękala-Safińska A. Immunochemical studies and gene cluster relationships of closely related O-antigens of Aeromonas hydrophila Pt679, Aeromonas popoffii A4, and Aeromonas sobria K928 strains classified into the PGO1 serogroup dominant in Polish aquaculture of carp and rainbow trout. Carbohydr Res 2023; 531:108896. [PMID: 37437416 DOI: 10.1016/j.carres.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
3
|
Geulin A, Bourne-Branchu Y, Ben Ayed K, Lecourt T, Joosten A. Ferrier/Aza-Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2-Trans 3-Amino-3-deoxyglycosides. Chemistry 2023; 29:e202203987. [PMID: 36793144 DOI: 10.1002/chem.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/17/2023]
Abstract
3-Amino-3-deoxyglycosides constitute an essential class of nitrogen-containing sugars. Among them, many important 3-amino-3-deoxyglycosides possess a 1,2-trans relationship. In view of their numerous biological applications, the synthesis of 3-amino-3-deoxyglycosyl donors giving rise to a 1,2-trans glycosidic linkage is thus an important challenge. Even though glycals are highly polyvalent donors, the synthesis and reactivity of 3-amino-3-deoxyglycals have been little studied. In this work, we describe a new sequence, involving a Ferrier rearrangement and subsequent aza-Wacker cyclization that allows the rapid synthesis of orthogonally protected 3-amino-3-deoxyglycals. Finally a 3-amino-3-deoxygalactal derivative was submitted for the first time to an epoxidation/glycosylation with high yield and great diastereoselectivity, highlighting FAWEG (Ferrier/Aza-Wacker/Epoxidation/Glycosylation) as a new approach to access 1,2-trans 3-amino-3-deoxyglycosides.
Collapse
Affiliation(s)
- Anselme Geulin
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Yann Bourne-Branchu
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Kawther Ben Ayed
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| |
Collapse
|
4
|
Balasaria S, Mukhopadhyay B. Chemical synthesis of the pentasaccharide repeating unit of the O-antigen from Escherichia coli strain SDLZB008 in the form of its 2-aminoethyl glycoside. Carbohydr Res 2023; 523:108734. [PMID: 36571947 DOI: 10.1016/j.carres.2022.108734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Chemical synthesis of the pentasaccharide repeating unit of the O-antigen from E. coli strain SDLZB008 is accomplished through a linear strategy using rationally protected monosaccharide derivatives ensuring desired stereochemical outcome up on glycosylations. 2-Aminoethyl glycoside is incorporated at the reducing end of the target pentasaccharide. The terminal free amine may be used for further conjugation with suitable aglycon without hampering the reducing end stereochemistry. The rare D-Fucp3NAc moiety is incorporated through the corresponding 3-azido derivative derived from a known 3-azido quinovose derivative.
Collapse
Affiliation(s)
- Sakshi Balasaria
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
5
|
Arbatsky NP, Shashkov AS, Shneider MM, Popova AV, Kasimova AA, Miroshnikov KA, Knirel YA, Hall RM, Kenyon JJ. The K89 capsular polysaccharide produced by Acinetobacter baumannii LUH5552 consists of a pentameric repeat-unit that includes a 3-acetamido-3,6-dideoxy-d-galactose residue. Int J Biol Macromol 2022; 217:515-521. [PMID: 35843396 DOI: 10.1016/j.ijbiomac.2022.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Acinetobacter baumannii isolate LUH5552 carries the KL89 capsule biosynthesis gene cluster. Capsular polysaccharide (CPS) isolated from LUH5552 was analyzed by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The K89 CPS structure has not been seen before in A. baumannii CPS structures resolved to date and includes a 3-acetamido-3,6-dideoxy-d-galactose (d-Fucp3NAc) residue which is rare amongst A. baumannii CPS. The K89 CPS has a →3)-α-d-GalpNAc-(1→3)-β-d-GlcpNAc-(1→ main chain with a β-d-Glcp-(1→2)-β-d-Fucp3NAc-(1→6)-d-Glcp side branch that is α-(1→4) linked to d-GalpNAc. The roles of the Wzy polymerase and the four glycosyltransferases encoded by the KL89 gene cluster in the biosynthesis of the K89 CPS were assigned. Two glycosyltransferases, Gtr121 and Gtr122, link the d-Fucp3NAc to its neighboring sugars.
Collapse
Affiliation(s)
- Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin A Miroshnikov
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Misra AK, Gucchait A, Kundu M. Synthesis of Pentasaccharide Repeating Unit Corresponding to the Cell Wall O-Polysaccharide of Salmonella enterica O55 Strain Containing a Rare Sugar 3-Acetamido-3-deoxy-d-fucose. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA pentasaccharide repeating unit corresponding to the cell wall O-antigen of Salmonella enterica O55 containing a rare sugar, 3-acetamido-3-deoxy-d-fucose has been synthesized as its p-methoxyphenyl glycoside using a sequential stereoselective glycosylation strategy. A suitably functionalized 3-azido-3-deoxy-d-fucose thioglycoside derivative was prepared in very good yield and used in the stereoselective glycosylation reaction. Functionalized monosaccharide intermediates were prepared judiciously and stereoselectively assembled to get the desired pentasaccharide derivative in excellent yield.
Collapse
|
7
|
Hou X, Perepelov AV, Guo X, Senchenkova SN, Shashkov AS, Liu B, Knirel YA, Wang L. A gene cluster at an unusual chromosomal location responsible for the novel O-antigen synthesis in Escherichia coli O62 by the ABC transporter-dependent pathway. Glycobiology 2018; 27:669-676. [PMID: 28402541 DOI: 10.1093/glycob/cwx030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/02/2017] [Indexed: 12/31/2022] Open
Abstract
The O-antigen is a part of the outer membrane of Gram-negative bacteria and is related to bacterial virulence. It is one of the most variable cell constituents, and its structural diversity is almost entirely due to genetic variation of the O-antigen gene cluster. In this study, the O-antigen structure of Escherichia coli O62 was elucidated by chemical analysis and nuclear magnetic resonance spectroscopy, but showing not consistent with the O-antigen gene cluster between conserved genes galF and gnd reported earlier. The complete genome of E. coli O62 was then sequenced and analyzed, and another O-antigen gene cluster was found and characterized that correlated perfectly with the established O-antigen structure. A deletion and complementation experiment confirmed the functionality of the novel gene cluster and demonstrated that the O62-antigen is synthesized by the ABC transporter-dependent system. To our knowledge, this is the first report that the O-antigen gene cluster is positioned at a novel locus in E. coli. Comparative analysis indicated that E. coli O62 likely originated from E. coli O68 via an IS event resulting in the repression of the O68-antigen synthesis, followed by the acquisition of a novel O-antigen gene cluster from Enterobacter aerogenes.
Collapse
Affiliation(s)
- Xi Hou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prospekt 47, 119991 Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Sof'ya N Senchenkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prospekt 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prospekt 47, 119991 Moscow, Russia
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prospekt 47, 119991 Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| |
Collapse
|
8
|
Full structure and insight into the gene cluster of the O-specific polysaccharide of Yersinia intermedia H9-36/83 (O:17). Carbohydr Res 2018. [PMID: 29524727 DOI: 10.1016/j.carres.2018.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide was isolated from bacteria Yersinia intermedia H9-36/83 (O:17) and degraded with mild acid to give an O-specific polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar analysis and 1D and 2D NMR spectroscopy. The polysaccharide was found to contain 3-deoxy-3-[(R)-3-hydroxybutanoylamino]-d-fucose (d-Fuc3NR3Hb) and the following structure of the heptasaccharide repeating unit was established: The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. intermedia are related to those of Hafnia alvei 1211 and Escherichia coli O:103.
Collapse
|
9
|
Contreras Sánchez-Matamoros R, Gil-Serrano AM, Espuny MR, Ollero FJ, Megías M, Rodríguez-Carvajal MA. Structure of surface polysaccharides from Aeromonas sp. AMG272, a plant-growth promoting rhizobacterium isolated from rice rhizosphere. Carbohydr Res 2018; 462:1-6. [PMID: 29604473 DOI: 10.1016/j.carres.2018.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
Aeromonas sp. AMG272 is a Gram-negative bacterium that has been isolated from agricultural soil and studied for its plant growth-promoting activities. Structures of the O-specific polysaccharide chain of the AMG272 lipopolysaccharide and its capsular polysaccharide were elucidated using GLC-MS and NMR spectroscopy. The structure of the O-specific polysaccharide, →4)-α-l-Rhap-(1 → 3)-β-d-GlcpNAc-(1→, has been found in other Aeromonas strains and related bacteria, whereas the structure of the capsular polysaccharide has not been reported before: →6)[β-d-Fucp3NAc4Ac-(1 → 3)]-α-d-GlcpNAc-(1 → 4)-α-d-Galp-(1 → 3)-α-d-GalpNAc-(1 → 4)-α-d-Galp-(1 → .
Collapse
Affiliation(s)
| | - Antonio M Gil-Serrano
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Profesor García González, 1, 41012, Seville, Spain
| | - M Rosario Espuny
- Department of Microbiology, Faculty of Biology, University of Seville, Avenida Reina Mercedes, s/n, 41012, Seville, Spain
| | - Francisco Javier Ollero
- Department of Microbiology, Faculty of Biology, University of Seville, Avenida Reina Mercedes, s/n, 41012, Seville, Spain
| | - Manuel Megías
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012, Seville, Spain
| | - Miguel A Rodríguez-Carvajal
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Profesor García González, 1, 41012, Seville, Spain.
| |
Collapse
|
10
|
Naumenko OI, Zheng H, Senchenkova SN, Wang H, Li Q, Shashkov AS, Wang J, Knirel YA, Xiong Y. Structures and gene clusters of the O-antigens of Escherichia albertii O3, O4, O6, and O7. Carbohydr Res 2017; 449:17-22. [PMID: 28672166 DOI: 10.1016/j.carres.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/02/2017] [Accepted: 06/16/2017] [Indexed: 11/27/2022]
Abstract
The O-specific polysaccharides (OPSs) called O-antigens were obtained by mild acid degradation of the lipopolysaccharides of Escherichia albertii serotypes O3, O4, O6, and O7 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure was established for the OPS of E. albertii O4, which, to our knowledge, is unique among known bacterial polysaccharide structures: →2)-α-l-Rhap-(1 → 2)-α-l-Fucp-(1 → 2)-β-d-Galp-(1 → 3)-α-d-GalpNAc-(1 → 3)-β-d-GlcpNAc-(1→ The OPS structure of the strain of E. albertii O7 studied was identical to that of strain LMG 20973 (= Albert 10457), whose structure has been reported earlier (R. Eserstam et al. Eur. J. Biochem. 269 (2002) 3289-3295). E. albertii O3 and O6 shared the OPS structures with Escherichia coli O181 and O3, respectively, except for the lack of O-acetylation in E. albertii O3, which is present in E. coli O181. The gene clusters driving the O-antigen biosynthesis of the E. albertii strains were sequenced, the genes were annotated by comparison with sequences in the available databases, and the predicted functions of the encoded proteins were found to be consistent with the OPS structures established. In accordance with the relatedness of the OPS structures, the O-antigen gene clusters of E. albertii O3 and O6 contain the same genes and have the same organization as those of E. coli O181 and O3, the entire gene clusters being 83% and 98% identical, respectively.
Collapse
Affiliation(s)
- Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
11
|
Senchenkova SN, Guo X, Naumenko OI, Shashkov AS, Perepelov AV, Liu B, Knirel YA. Structure and genetics of the O-antigens of Escherichia coli O182-O187. Carbohydr Res 2016; 435:58-67. [PMID: 27710814 DOI: 10.1016/j.carres.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022]
Abstract
O-polysaccharides (OPSs) were obtained by mild acid degradation of the lipopolysaccharides of Escherichia coli O182-O187, and their structures were established by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. In addition to the monosaccharides that occur often in E. coli OPSs (d-Glc, d-Gal, d-Man, d-GlcNAc, d-GalNAc, d-GlcA, l-Fuc, d-Rib), a number of less common components were identified as the OPS constituents, including 2-acetamido-2-deoxy-l-quinovose and 4-deoxy-4-[(S)-3-hydroxybutanoyl-l-alanyl]-d-quinovose (O186), 3-acetamido-3-deoxy-d-fucose (O187), 3-deoxy-3-[(R)-3-hydroxybutanoyl]-d-fucose (O184), and 2,3-diacetamido-2,3-dideoxy-l-rhamnose (O182). The OPS structures of E. coli O183 and O182 are identical to those of the OPS of Shigella boydii type 10 and the capsular polysaccharide of E. coli K48, respectively. The OPSs of E. coli O186 and O123 are closely related differing in the presence of a Glc residue in the former in place of a GlcNAc residue in the latter. The O-antigen gene clusters of the bacteria studied were analyzed and their contents were found to be consistent with the OPS structures. Predicted glycosyltransferases encoded in the gene clusters were tentatively assigned to glycosidic linkages based on similarities to sequences of other E. coli O-serogroups available from GenBank and taking into account the OPS structures established.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| |
Collapse
|
12
|
Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection. PLoS One 2016; 11:e0155115. [PMID: 27171009 PMCID: PMC4869667 DOI: 10.1371/journal.pone.0155115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Hafnia alvei is a facultative and rod-shaped gram-negative bacterium
that belongs to the Enterobacteriaceae family. Although it has been
more than 50 years since the genus was identified, very little is known about
variations among Hafnia species. Diversity in O-antigens
(O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to
different hosts and situations and variability in the environment. Antigenic
variation is also an important factor in pathogenicity that has been used to define
clones within a number of species. The genes that are required to synthesize OPS are
always clustered within the bacterial chromosome. A serotyping scheme including 39
O-serotypes has been proposed for H. alvei, but it
has not been correlated with known OPS structures, and no previous report has
described the genetic features of OPS. In this study, we obtained the genome
sequences of 21 H. alvei strains (as defined by
previous immunochemical studies) with different lipopolysaccharides. This is the
first study to show that the O-antigen gene cluster in H.
alvei is located between mpo and
gnd in the chromosome. All 21 of the OPS gene clusters contain
both the wzx gene and the wzy gene and display a
large number of polymorphisms. We developed an O serotype-specific
wzy-based suspension array to detect all 21 of the distinct OPS
forms we identified in H. alvei. To the best of our
knowledge, this is the first report to identify the genetic features of
H. alvei antigenic variation and to develop a
molecular technique to identify and classify different serotypes.
Collapse
|
13
|
Shashkov AS, Wang M, Turdymuratov EM, Hu S, Arbatsky NP, Guo X, Wang L, Knirel YA. Structural and genetic relationships of closely related O-antigens of Cronobacter spp. and Escherichia coli: C. sakazakii G2594 (serotype O4)/E. coli O103 and C. malonaticus G3864 (serotype O1)/E. coli O29. Carbohydr Res 2015; 404:124-31. [DOI: 10.1016/j.carres.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
|
14
|
Tall BD, Chen Y, Yan Q, Gopinath GR, Grim CJ, Jarvis KG, Fanning S, Lampel KA. Cronobacter: an emergent pathogen causing meningitis to neonates through their feeds. Sci Prog 2014; 97:154-72. [PMID: 25108996 PMCID: PMC10365370 DOI: 10.3184/003685014x13994743930498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recognition of Cronobacter as a public health concern was raised when powdered infant formula (PIF) was linked to several neonatal meningitis outbreaks. It is an opportunistic pathogen that causes necrotising enterocolitis, infantile septicaemia, and meningitis which carries a high mortality rate among neonates. It has been also linked with cases of infection in adults and elderly. Over the past decade, much focus has been made on developing sensitive and specific characterisation, detection, and isolation methods to ascertain the quality of foods, notably contamination of PIF with Cronobacter and to understand its ability to cause disease. Whole genome sequencing has unveiled several putative virulence factors, yet the full capacity of the pathogenesis of Cronobacter has not yet been elucidated.
Collapse
Affiliation(s)
- Ben D. Tall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration in Laurel, Maryland
| | - Yi Chen
- FDA in College Park, Maryland
| | | | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, FDA, in Laurel, Maryland
| | | | - Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, FDA, in Laurel, Maryland
| | | | | |
Collapse
|
15
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Hu D, Liu B, Dijkshoorn L, Wang L, Reeves PR. Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One 2013; 8:e70329. [PMID: 23922982 PMCID: PMC3726653 DOI: 10.1371/journal.pone.0070329] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
We have sequenced the gene clusters for type strains of the Acinetobacter baumannii serotyping scheme developed in the 1990s, and used the sequences to better understand diversity in surface polysaccharides of the genus. We obtained genome sequences for 27 available serovar type strains, and identified 25 polysaccharide gene cluster sequences. There are structures for 12 of these polysaccharides, and in general the genes present are appropriate to the structure where known. This greatly facilitates interpretation. We also find 53 different glycosyltransferase genes, and for 7 strains can provisionally allocate specific genes to all linkages. We identified primers that will distinguish the 25 sequence forms by PCR or microarray, or alternatively the genes can be used to determine serotype by “molecular serology”. We applied the latter to 190 Acinetobacter genome-derived gene-clusters, and found 76 that have one of the 25 gene-cluster forms. We also found novel gene clusters and added 52 new gene-cluster sequence forms with different wzy genes and different gene contents. Altogether, the strains that have one of the original 25 sequence forms include 98 A. baumannii (24 from our strains) and 5 A. nosocomialis (3 from our strains), whereas 32 genomes from 12 species other than A. baumannii or A. nosocomialis, all have new sequence forms. One of the 25 serovar type sequences is found to be in European clone I (EC I), 2 are in EC II but none in EC III. The public genome strains add an additional 52 new sequence forms, and also bring the number found in EC I to 5, in EC II to 9 and in EC III to 2.
Collapse
Affiliation(s)
- Dalong Hu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin, China
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
17
|
Jarvis KG, Yan QQ, Grim CJ, Power KA, Franco AA, Hu L, Gopinath G, Sathyamoorthy V, Kotewicz ML, Kothary MH, Lee C, Sadowski J, Fanning S, Tall BD. Identification and Characterization of Five New Molecular Serogroups of Cronobacter spp. Foodborne Pathog Dis 2013; 10:343-52. [DOI: 10.1089/fpd.2012.1344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Qiong Q. Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference, and Training on Cronobacter, UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Karen A. Power
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference, and Training on Cronobacter, UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Augusto A. Franco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Lan Hu
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Venugopal Sathyamoorthy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Michael L. Kotewicz
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Mahendra H. Kothary
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Chloe Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Jennifer Sadowski
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| | - Seamus Fanning
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference, and Training on Cronobacter, UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
18
|
Association of nucleotide polymorphisms within the O-antigen gene cluster of Escherichia coli O26, O45, O103, O111, O121, and O145 with serogroups and genetic subtypes. Appl Environ Microbiol 2012; 78:6689-703. [PMID: 22798363 DOI: 10.1128/aem.01259-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are important food-borne pathogens capable of causing hemolytic-uremic syndrome. STEC O157:H7 strains cause the majority of severe disease in the United States; however, there is a growing concern for the amount and severity of illness attributable to non-O157 STEC. Recently, the Food Safety and Inspection Service (FSIS) published the intent to regulate the presence of STEC belonging to serogroups O26, O45, O103, O111, O121, and O145 in nonintact beef products. To ensure the effective control of these bacteria, sensitive and specific tests for their detection will be needed. In this study, we identified single nucleotide polymorphisms (SNPs) in the O-antigen gene cluster that could be used to detect STEC strains of the above-described serogroups. Using comparative DNA sequence analysis, we identified 22 potentially informative SNPs among 164 STEC and non-STEC strains of the above-described serogroups and designed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) assays to test the STEC allele frequencies in an independent panel of bacterial strains. We found at least one SNP that was specific to each serogroup and also differentiated between STEC and non-STEC strains. Differences in the DNA sequence of the O-antigen gene cluster corresponded well with differences in the virulence gene profiles and provided evidence of different lineages for STEC and non-STEC strains. The SNPs discovered in this study can be used to develop tests that will not only accurately identify O26, O45, O103, O111, O121, and O145 strains but also predict whether strains detected in the above-described serogroups contain Shiga toxin-encoding genes.
Collapse
|
19
|
Fontana C, Lundborg M, Weintraub A, Widmalm G. Structural studies and biosynthetic aspects of the O-antigen polysaccharide from Escherichia coli O174. Carbohydr Res 2012; 354:102-5. [PMID: 22572125 DOI: 10.1016/j.carres.2012.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 11/30/2022]
Abstract
The structure of the repeating unit of the O-antigenic polysaccharide (PS) from Escherichia coli O174 has been determined. Component analysis together with (1)H and (13)C NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by (1)H,(13)C-heteronuclear multiple-bond correlation and (1)H,(1)H-NOESY experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [formula see text] Cross-peaks of low intensity were present in the NMR spectra consistent with a β-D-GlcpNAc-(1→2)-β-D-GlcpA(1→ structural element at the terminal part of the polysaccharide, which on average is composed of ∼15 repeating units. Consequently the biological repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Perepelov AV, Liu B, Guo D, Senchenkova SN, Shahskov AS, Feng L, Wang L, Knirel YA. Structure elucidation of the O-Antigen of Salmonella enterica O51 and its structural and genetic relation to the O-Antigen of Escherichia coli O23. BIOCHEMISTRY (MOSCOW) 2012; 76:774-9. [PMID: 21999538 DOI: 10.1134/s0006297911070078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The O-polysaccharide (O-antigen) of Salmonella enterica O51 was isolated by mild acid degradation of the lipopolysaccharide and its structure was established using sugar analysis and NMR spectroscopy. The O-antigen of Escherichia coli O23, whose structure was elucidated earlier, possesses a similar structure and differs only in the presence of an additional lateral α-D-Glcp residue at position 6 of the GlcNAc residue in the main chain. Sequencing of the O-antigen gene clusters of S. enterica O51 and E. coli O23 revealed the same genes with a high-level similarity. By comparison with opened gene databases, all genes expected for the synthesis of the common structure of the two O-antigens were assigned functions. It is suggested that the gene clusters of both bacteria originated from a common ancestor, whereas the O-antigen modification in E. coli O23, which, most probably, is induced by prophage genes outside the gene cluster, could be introduced after the species divergence.
Collapse
Affiliation(s)
- A V Perepelov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kenyon JJ, De Castro C, Cunneen MM, Reeves PR, Molinaro A, Holst O, Skurnik M. The genetics and structure of the O-specific polysaccharide of Yersinia pseudotuberculosis serotype O:10 and its relationship with Escherichia coli O111 and Salmonella enterica O35. Glycobiology 2011; 21:1131-9. [DOI: 10.1093/glycob/cwr006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl Environ Microbiol 2011; 77:4017-26. [PMID: 21531829 DOI: 10.1128/aem.00162-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter (formerly Enterobacter sakazakii) is a recently defined genus consisting of six species, C. sakazakii, C. malonaticus, C. dublinensis, C. muytjensii, C. turicensis, and Cronobacter genomospecies 1. In this study, MboII restriction fragment length polymorphism (RFLP) patterns of O-antigen gene clusters, located between galF and gnd, were used to identify serotypes in Cronobacter spp. Seven O-antigen RFLP clusters were generated, including three C. sakazakii clusters, previously identified as serotypes O1, O2, and O3. The O-antigen regions of six strains with unique RFLP patterns, including two C. sakazakii strains, two C. malonaticus strains, one C. turicensis strain, and one C. muytjensii strain, revealed three O-antigen gene clusters shared among Cronobacter species. PCR assays were developed, targeting the wzx O-antigen polymerase gene, and used to screen 231 Cronobacter strains to determine the frequency of these newly identified serotypes.
Collapse
|
23
|
Li Y, Perepelov AV, Guo D, Shevelev SD, Senchenkova SN, Shahskov AS, Liu B, Wang L, Knirel YA. Structural and genetic relationships of two pairs of closely related O-antigens ofEscherichia coliandSalmonella enterica:E. coliO11/S. entericaO16 andE. coliO21/S. entericaO38. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1574-695x.2010.00771.x (2011)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Li Y, Perepelov AV, Guo D, Shevelev SD, Senchenkova SN, Shahskov AS, Liu B, Wang L, Knirel YA. Structural and genetic relationships of two pairs of closely related O-antigens ofEscherichia coliandSalmonella enterica:E. coliO11/S. entericaO16 andE. coliO21/S. entericaO38. ACTA ACUST UNITED AC 2011; 61:258-68. [DOI: 10.1111/j.1574-695x.2010.00771.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Liu B, Perepelov AV, Guo D, Shevelev SD, Senchenkova SN, Feng L, Shashkov AS, Wang L, Knirel YA. Structural and genetic relationships between the O-antigens ofEscherichia coliO118 and O151. ACTA ACUST UNITED AC 2010; 60:199-207. [DOI: 10.1111/j.1574-695x.2010.00738.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|