1
|
Rauschenberger V, Piro I, Kasaragod VB, Hörlin V, Eckes AL, Kluck CJ, Schindelin H, Meinck HM, Wickel J, Geis C, Tüzün E, Doppler K, Sommer C, Villmann C. Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation. Front Mol Neurosci 2023; 16:1089101. [PMID: 36860666 PMCID: PMC9969106 DOI: 10.3389/fnmol.2023.1089101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.
Collapse
Affiliation(s)
- Vera Rauschenberger
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Inken Piro
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Vikram Babu Kasaragod
- Rudolf Virchow Centre for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Verena Hörlin
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Anna-Lena Eckes
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Christoph J. Kluck
- Institute of Biochemistry, Emil-Fischer-Center, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Schindelin
- Rudolf Virchow Centre for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Hans-Michael Meinck
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Erdem Tüzün
- Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany,*Correspondence: Carmen Villmann, ✉
| |
Collapse
|
2
|
Bartenschlager F, Klymiuk N, Gruber AD, Mundhenk L. Genomic, biochemical and expressional properties reveal strong conservation of the CLCA2 gene in birds and mammals. PeerJ 2022; 10:e14202. [PMID: 36389428 PMCID: PMC9651043 DOI: 10.7717/peerj.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technische Universität München, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Bartenschlager F, Klymiuk N, Weise C, Kuropka B, Gruber AD, Mundhenk L. Evolutionarily conserved properties of CLCA proteins 1, 3 and 4, as revealed by phylogenetic and biochemical studies in avian homologues. PLoS One 2022; 17:e0266937. [PMID: 35417490 PMCID: PMC9007345 DOI: 10.1371/journal.pone.0266937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Species-specific diversities are particular features of mammalian chloride channel regulator, calcium activated (CLCA) genes. In contrast to four complex gene clusters in mammals, only two CLCA genes appear to exist in chickens. CLCA2 is conserved in both, while only the galline CLCA1 (gCLCA1) displays close genetic distance to mammalian clusters 1, 3 and 4. In this study, sequence analyses and biochemical characterizations revealed that gCLCA1 as a putative avian prototype shares common protein domains and processing features with all mammalian CLCA homologues. It has a transmembrane (TM) domain in the carboxy terminal region and its mRNA and protein were detected in the alimentary canal, where the protein was localized in the apical membrane of enterocytes, similar to CLCA4. Both mammals and birds seem to have at least one TM domain containing CLCA protein with complex glycosylation in the apical membrane of enterocytes. However, some characteristic features of mammalian CLCA1 and 3 including entire protein secretion and expression in cell types other than enterocytes seem to be dispensable for chicken. Phylogenetic analyses including twelve bird species revealed that avian CLCA1 and mammalian CLCA3 form clades separate from a major branch containing mammalian CLCA1 and 4. Overall, our data suggest that gCLCA1 and mammalian CLCA clusters 1, 3 and 4 stem from a common ancestor which underwent complex gene diversification in mammals but not in birds.
Collapse
Affiliation(s)
- Florian Bartenschlager
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich, Munich, Germany
- Center for Innovative Medical Models, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
4
|
Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 2014; 41:71-8. [PMID: 25460543 DOI: 10.1016/j.semcdb.2014.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
Abstract
Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. N-linked oligosaccharides are important for protein folding and stability, biosynthetic quality control, intracellular traffic and the physiological function of many N-glycosylated proteins. In metazoan organisms, the oligosaccharyltransferase is composed of a catalytic subunit (STT3A or STT3B) and a set of accessory subunits. Duplication of the catalytic subunit gene allowed cells to evolve OST complexes that act sequentially to maximize the glycosylation efficiency of the large number of proteins that are glycosylated in metazoan organisms. We will summarize recent progress in understanding the mechanism of (a) cotranslational glycosylation by the translocation channel associated STT3A complex, (b) the role of the STT3B complex in mediating cotranslational or posttranslocational glycosylation of acceptor sites that have been skipped by the STT3A complex, and (c) the role of the oxidoreductase MagT1 in STT3B-dependent glycosylation of cysteine-proximal acceptor sites.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
5
|
Shrimal S, Trueman SF, Gilmore R. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. ACTA ACUST UNITED AC 2013; 201:81-95. [PMID: 23530066 PMCID: PMC3613688 DOI: 10.1083/jcb.201301031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosylation in the C-terminal 50–55 residues of proteins is mediated posttranslocationally by the STT3B isoform of oligosaccharyltransferase, with a preference for NXT sites. Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65–75 residues of a glycoprotein will not contact the translocation channel–associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
6
|
Abstract
The polypeptide of a G protein-coupled receptor is inserted into the membrane of the endoplasmic reticulum while being translated and this process by itself may be sufficient to establish the proper receptor fold. X-ray structures reveal a common polypeptide topology with little variation in the alignment and orientation of the seven transmembrane segments, the proximal carboxyl terminus (C-tail) and parts of the extracellular loops. These define a structural core the stability of which probably represents a major criterion for the receptor to pass endoplasmic reticulum (ER) quality control; point mutations affecting the structure of the core have an extraordinary chance of causing receptor retention. In contrast, cytoplasmic loops 2 and 3 and the distal C-tail are poorly ordered at least in the absence of an interaction partner. Similarly, the amino terminal tail of rhodopsin-related receptors (but not of receptor subtypes where ligand binding requires a stable fold of the N-tail) is unlikely to establish a stable fold. These segments can cause ER retention when mutated to inappropriately expose hydrophobic peptide patches; to prevent protein aggregation chaperone molecules attach to them thus initiating selection for ER-associated degradation. It is less clear however if there are additional mechanisms to specifically survey the transmembrane core at the level of the lipid bilayer or if insufficient packing is detected due to misalignment of the cytoplasmic or extracellular face of the receptor.
Collapse
Affiliation(s)
- Christian Nanoff
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medizinische Universität Wien, Vienna, Austria,
| | | |
Collapse
|