1
|
Pan Y, Sun H, Gu X, Li S, Yang S, Zhang L, Mao H, Wang P, Yang S, Yin R, Zuo Z, Zhao J. Oligosaccharide-assisted resolution of holothurian fucosylated chondroitin sulfate for fine structure and P-selectin inhibition. Carbohydr Polym 2025; 351:123145. [PMID: 39778981 DOI: 10.1016/j.carbpol.2024.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCSHm) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCSHm consisted of a {D-GlcA-β1,3-D-GalNAc4S6S} backbone and branches of alternating FucS (55 %) and D-GalNAcS-α1,2-L-FucS (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS. Detailed structure-activity relationship analyses showed that FCSHm and its depolymerized products (>8 kDa) effectively competed with SLeX and PSGL-1 to bind with P-sel at nano-molar level and the inhibition potency increased with Mw increasing. For the structural trisaccharide unit, di-O-sulfation of the FucS (Fuc2S4S and Fuc3S4S) was almost 10-fold more potent than mono-O-sulfation (Fuc4S). Unexpectedly, higher sulfation of the disaccharide-branched tetrasaccharide unit reduced inhibition. The reversal may attribute to fewer interactions with P-sel by molecular docking study. These results suggested that the specific configuration underpinned the potent inhibition, whereas the size and sulfate number of branches were not the key factors for the specific binding. dHmF4 (8.0 kDa) potently blocked the platelet-leukocyte aggregates formation, further verifying the potential value in use.
Collapse
Affiliation(s)
- Ying Pan
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifang Sun
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shengtao Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Mao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shasha Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jinhua Zhao
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
2
|
Hou Z, Wang W, Wang Y, Chen S, Ye X. Rapid characterization of polysaccharides from marine animals using chemical degradation combined with liquid chromatography mass spectrometry. Int J Biol Macromol 2025; 291:138535. [PMID: 39653205 DOI: 10.1016/j.ijbiomac.2024.138535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Glycosaminoglycans of marine origin have exceptional biological activities, but rapid elucidation strategies for precise structures are still lacking. In this study, the optimal conditions for deacetylation of glycosaminoglycans were optimized first. The hydrazinolysis time of 24 h was determined as the final condition, oligosaccharides with a degree of polymerization of 2-14 are mainly produced after hydrazinolysis. Then mixed oligosaccharides generated by deacetylation-deamination cleavage of polysaccharides were detected with hydrophilic interaction chromatography with tandem mass spectrometry (HILIC-MS/MS), and the total ion chromatography showed excellent resolution. The mass spectrometry data were automatically processed by GlycReSoft, and the corresponding matching results were obtained according to the set parameters. A small amount of keratan sulfate exists in oligosaccharides of Teuthida and Salmo salar, and ion peaks corresponding to IdoA-GalNAc4S exist in oligosaccharides of Scophthalmus maximus and Salmo salar. The results of the manual analysis of the mass spectrometry data verified that the HILIC-MS/MS combined with automatic analysis by software adopted in this study could achieve accurate matching and matching of mixed oligosaccharide components. The establishment of a rapid and accurate analysis strategy for the structure of glycosaminoglycans in this study will help the development of its application and standardized industrial production.
Collapse
Affiliation(s)
- Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Wenkang Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuying Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
3
|
Ustyuzhanina NE, Bilan MI, Anisimova NY, Nikogosova SP, Dmitrenok AS, Tsvetkova EA, Panina EG, Sanamyan NP, Avilov SA, Stonik VA, Kiselevskiy MV, Usov AI, Nifantiev NE. Fucosylated Chondroitin Sulfates with Rare Disaccharide Branches from the Sea Cucumbers Psolus peronii and Holothuria nobilis: Structures and Influence on Hematopoiesis. Pharmaceuticals (Basel) 2023; 16:1673. [PMID: 38139800 PMCID: PMC10748315 DOI: 10.3390/ph16121673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Two fucosylated chondroitin sulfates were isolated from the sea cucumbers Psolus peronii and Holothuria nobilis using a conventional extraction procedure in the presence of papain, followed by anion-exchange chromatography on DEAE-Sephacel. Their composition was characterized in terms of quantitative monosaccharide and sulfate content, and structures were mainly elucidated using 1D- and 2D-NMR spectroscopy. As revealed by the data of the NMR spectra, both polysaccharides along with the usual fucosyl branches contained rare disaccharide branches α-D-GalNAc4S6R-(1→2)-α-L-Fuc3S4R → attached to O-3 of the GlcA of the backbone (R = H or SO3-). The polysaccharides were studied as stimulators of hematopoiesis in vitro using mice bone marrow cells as the model. The studied polysaccharides were shown to be able to directly stimulate the proliferation of various progenitors of myelocytes and megakaryocytes as well as lymphocytes and mesenchymal cells in vitro. Therefore, the new fucosylated chondroitin sulfates can be regarded as prototype structures for the further design of GMP-compatible synthetic analogs for the development of new-generation hematopoiesis stimulators.
Collapse
Affiliation(s)
- Nadezhda E. Ustyuzhanina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Maria I. Bilan
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Natalia Yu. Anisimova
- FSBI N.E.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115458, Russia; (N.Y.A.); (M.V.K.)
| | - Sofya P. Nikogosova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Evgenia A. Tsvetkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Elena G. Panina
- Kamchatka Branch of Pacific Geographical Institute FEB RAS, Petropavlovsk-Kamchatsky 683000, Russia; (E.G.P.); (N.P.S.)
| | - Nadezhda P. Sanamyan
- Kamchatka Branch of Pacific Geographical Institute FEB RAS, Petropavlovsk-Kamchatsky 683000, Russia; (E.G.P.); (N.P.S.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (S.A.A.); (V.A.S.)
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (S.A.A.); (V.A.S.)
| | - Mikhail V. Kiselevskiy
- FSBI N.E.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115458, Russia; (N.Y.A.); (M.V.K.)
| | - Anatolii I. Usov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| |
Collapse
|
4
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Li H, Yuan Q, Lv K, Ma H, Gao C, Liu Y, Zhang S, Zhao L. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: A review. Carbohydr Polym 2021; 251:117034. [DOI: 10.1016/j.carbpol.2020.117034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
6
|
Yan L, Zhu M, Wang D, Tao W, Liu D, Zhang F, Linhardt RJ, Ye X, Chen S. Oral Administration of Fucosylated Chondroitin Sulfate Oligomers in Gastro-Resistant Microcapsules Exhibits a Safe Antithrombotic Activity. Thromb Haemost 2021; 121:15-26. [PMID: 32862408 DOI: 10.1055/s-0040-1714738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fucosylated chondroitin sulfate (FCS) polysaccharide isolated from sea cucumber has potent anticoagulant activity. Based on its resistance to the enzymes present in vertebrates, it may serve as an anticoagulant and shows antithrombotic effects when delivered through gastro-resistant (GR) tablets. However, due to the multiple plasma targets of FCS polysaccharide in the coagulation pathway, bleeding can occur after its oral administration. In the current study, we used FCS oligomers, in particular a mixture of oligosaccharides having 6 to 18 saccharide units, as the active ingredient in GR microcapsules for oral anticoagulation. In a Caco-2 model, the FCS oligomers showed higher absorption than native FCS polysaccharides. Oral administration of FCS oligomer-GR microcapsules provided a dose-dependent, prolonged anticoagulant effect with a selective inhibition of the intrinsic coagulation pathway when compared with subcutaneous administration of FCS oligomers or oral administration of unformulated FCS oligomers or native FCS-GR microspheres. Continued oral administration of FCS oligomer-GR microcapsules did not result in the accumulation of oligosaccharides in the plasma. Venous thrombosis animal models demonstrated that FCS oligomers delivered via GR microcapsules produced a potent antithrombotic effect dependent on their anticoagulant properties in the plasma, while oral administration of unformulated FCS oligomers at the same dose exhibited a weaker antithrombotic effect than the formulated version. Oral administration of FCS oligomer-GR microcapsules resulted in no bleeding, while oral administration of native FCS-GR microcapsules resulted in bleeding (p < 0.05). Our present results suggest that a FCS oligomer-GR microcapsule formulation represents an effective and safe oral anticoagulant for potential clinical applications.
Collapse
Affiliation(s)
- Lufeng Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Mengshan Zhu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Danli Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Wenyang Tao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Metabolic engineering for production of functional polysaccharides. Curr Opin Biotechnol 2020; 66:44-51. [DOI: 10.1016/j.copbio.2020.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
|
8
|
Mao H, Cai Y, Li S, Sun H, Lin L, Pan Y, Yang W, He Z, Chen R, Zhou L, Wang W, Yin R, Zhao J. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides: Unusual structure and anti-intrinsic tenase activity. Carbohydr Polym 2020; 245:116503. [DOI: 10.1016/j.carbpol.2020.116503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
|
9
|
Gong J, Zhou G, Wu Y, Zhang S, Liu X. Offline Selective Extraction Combined with Online Enrichment for Sensitive Analysis of Chondroitin Sulfate by Capillary Electrophoresis. J Chromatogr Sci 2020; 58:868-874. [DOI: 10.1093/chromsci/bmaa052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022]
Abstract
AbstractA capillary electrophoresis (CE) method combined with online and offline enrichment for improving the detection sensitivity of chondroitin sulfate (CS) is established. The online enrichment method is based on the field-amplified sample stacking and large volume electrokinetic injection, and offline enrichment is based on the association between cetyltrimethylammonium chloride and CS. Experimental parameters affecting CE method such as the type and pH of background electrolyte, the injection mode and time and the steps of offline enrichment were optimized. Under optimum conditions, the calibration plot between CS concentration and peak area was linear in the range of 1 ~ 100 μg/mL. The enrichment factor was 130 times and the limit of detection was 50 ng/mL. The average recovery was 103.5% and the relative standard deviation of peak area was <2.0%. The method was successfully applied to the quantitative analysis of CS in drugs.
Collapse
Affiliation(s)
- Jie Gong
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guanglian Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yuanhong Wu
- Obstetrics and Gynecology Department, Jinan Shizhong People’s Hospital, Jinan 250002, China
| | - Siying Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
10
|
Yan L, Wang D, Yu Y, Zhang F, Ye X, Linhardt RJ, Chen S. Fucosylated Chondroitin Sulfate 9-18 Oligomers Exhibit Molecular Size-Independent Antithrombotic Activity while Circulating in the Blood. ACS Chem Biol 2020; 15:2232-2246. [PMID: 32786291 DOI: 10.1021/acschembio.0c00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fucosylated chondroitin sulfate (FCS) oligosaccharides extracted from sea cucumber and depolymerized exhibit potent anticoagulant activity. Knowledge of the antithrombotic activity of different size oligosaccharides and their fucose (Fuc) branch sulfation pattern should promote their development for clinical applications. We prepared highly purified FCS trisaccharide repeating units from hexasaccharide (6-mer) to octadecasaccharide (18-mer), including those with 2,4-disulfated and 3,4-disulfated Fuc branches. All 10 oligosaccharides were identified by their nuclear magnetic resonance structures and ESI-FTMS spectroscopy. In vitro anticoagulant activities and surface plasmon resonance binding tests indicated those of larger molecular sizes and 2,4-disulfated Fuc branches showed stronger anticoagulant effects with respect to anti-FXase activity, as well as stronger binding to FIXa among various clotting proteins. However, both types of FCS 9-mer to 18-mer exhibited molecular size-independent potent antithrombotic activity in vivo at the same dose. In addition, both types of the FCS 6-mer exhibited favorable antithrombotic activity in vivo, although they showed weak anticoagulant activity in vitro. Combining absorption and metabolism studies, we conclude that FCS 9-18 oligomers could remain in the circulation to interact with various clotting proteins to prevent thrombus formation, and appreciable quantities of these oligomers could be excreted through the kidneys. All FCS 9-18 oligomers also resulted in no bleeding, hypotension, or platelet aggregation risk during blood circulation. Thus, FCS 9-18 oligomers with 2,4-disulfated or 3,4-disulfated Fuc branches exhibit potent and safe antithrombotic activity needed for clinical applications.
Collapse
Affiliation(s)
- Lufeng Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Danli Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yanlei Yu
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Fuming Zhang
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Robert J. Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Vessella G, Traboni S, Laezza A, Iadonisi A, Bedini E. (Semi)-Synthetic Fucosylated Chondroitin Sulfate Oligo- and Polysaccharides. Mar Drugs 2020; 18:E293. [PMID: 32492857 PMCID: PMC7345195 DOI: 10.3390/md18060293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan (GAG) polysaccharide with a unique structure, displaying a backbone composed of alternating N-acetyl-d-galactosamine (GalNAc) and d-glucuronic acid (GlcA) units on which l-fucose (Fuc) branches are installed. fCS shows several potential biomedical applications, with the anticoagulant activity standing as the most promising and widely investigated one. Natural fCS polysaccharides extracted from marine organisms (Echinoidea, Holothuroidea) present some advantages over a largely employed antithrombotic drug such as heparin, but some adverse effects as well as a frequently found structural heterogeneity hamper its development as a new drug. To circumvent these drawbacks, several efforts have been made in the last decade to obtain synthetic and semi-synthetic fCS oligosaccharides and low molecular weight polysaccharides. In this Review we have for the first time collected these reports together, dividing them in two topics: (i) total syntheses of fCS oligosaccharides and (ii) semi-synthetic approaches to fCS oligosaccharides and low molecular weight polysaccharides as well as glycoclusters displaying multiple copies of fCS species.
Collapse
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy; (G.V.); (S.T.); (A.I.)
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy; (G.V.); (S.T.); (A.I.)
| | - Antonio Laezza
- Department of Sciences, University of Basilicata, viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy;
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy; (G.V.); (S.T.); (A.I.)
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy; (G.V.); (S.T.); (A.I.)
| |
Collapse
|