1
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
2
|
Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Molecules 2021; 26:molecules26195950. [PMID: 34641494 PMCID: PMC8512710 DOI: 10.3390/molecules26195950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.
Collapse
|
3
|
Abukar T, Rahmani S, Thompson NK, Antonescu CN, Wakarchuk WW. Development of BODIPY labelled sialic acids as sialyltransferase substrates for direct detection of terminal galactose on N- and O-linked glycans. Carbohydr Res 2021; 500:108249. [PMID: 33545445 DOI: 10.1016/j.carres.2021.108249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Glycans on proteins and cell surfaces are useful biomarkers for determining functional interactions with glycan binding proteins, potential disease states, or indeed level of differentiation. The ability to rapidly and sensitively detect or tag specific glycans on proteins provides a diagnostic tool with wide application in chemical glycobiology. The monosaccharide N-acetylneuraminic acid (sialic acid) is a key player in these interactions and the manipulation and control of sialylation levels has been an important research focus, particularly in the development of therapeutic proteins. Using sialyltransferases to tag specific glycans provides a rapid means of determining what types of glycans are present. We have synthesized two variants of sialic acid carrying the fluorophore BODIPY (4,4 -Difluoro-4-boro-3a,4a-diaza-s-indacene) and examined its use with several different sialyltransferases on a variety of protein substrates and cell surface glycans. Our data show that there are significant differences between various enzymes ability to transfer the labelled sialic acids, and that the type of N-glycan and target protein strongly influences this activity.
Collapse
Affiliation(s)
- Tasnim Abukar
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Current Address. PlantForm Corporation, 1920 Yonge Street, Suite 200, Toronto, ON M4S3E2, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Nicole K Thompson
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Warren W Wakarchuk
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada.
| |
Collapse
|
4
|
Wu ZL, Luo A, Grill A, Lao T, Zou Y, Chen Y. Fluorescent Detection of O-GlcNAc via Tandem Glycan Labeling. Bioconjug Chem 2020; 31:2098-2102. [DOI: 10.1021/acs.bioconjchem.0c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhengliang L. Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E. Minneapolis, Minnesota 55413, United States
| | - Ang Luo
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alex Grill
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E. Minneapolis, Minnesota 55413, United States
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yonglong Zou
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E. Minneapolis, Minnesota 55413, United States
| | - Yue Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Wu ZL, Whittaker M, Ertelt JM, Person AD, Kalabokis V. Detecting substrate glycans of fucosyltransferases with fluorophore-conjugated fucose and methods for glycan electrophoresis. Glycobiology 2020; 30:970-980. [PMID: 32248235 PMCID: PMC7724747 DOI: 10.1093/glycob/cwaa030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Like sialylation, fucose usually locates at the nonreducing ends of various glycans on glycoproteins and constitutes important glycan epitopes. Detecting the substrate glycans of fucosyltransferases is important for understanding how these glycan epitopes are regulated in response to different growth conditions and external stimuli. Here we report the detection of these glycans on glycoproteins as well as in their free forms via enzymatic incorporation of fluorophore-conjugated fucose using FUT2, FUT6, FUT7, FUT8 and FUT9. Specifically, we describe the detection of the substrate glycans of these enzymes on fetal bovine fetuin, recombinant H1N1 viral neuraminidase and therapeutic antibodies. The detected glycans include complex and high-mannose N-glycans. By establishing a series of precursors for the synthesis of Lewis X and sialyl Lewis X structures, we not only provide convenient electrophoresis methods for studying glycosylation but also demonstrate the substrate specificities and some kinetic features of these enzymes. Our results support the notion that fucosyltransferases are key targets for regulating the synthesis of Lewis X and sialyl Lewis X structures.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Mark Whittaker
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - James M Ertelt
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Anthony D Person
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Vassili Kalabokis
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| |
Collapse
|