1
|
K S PK, Jyothi MN, Prashant A. Mitochondrial DNA variants in the pathogenesis and metabolic alterations of diabetes mellitus. Mol Genet Metab Rep 2025; 42:101183. [PMID: 39835172 PMCID: PMC11743804 DOI: 10.1016/j.ymgmr.2024.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features. Other types of mtDNA variants involve genes ND4 and tRNA Ala genes that increase susceptibility to type 2 diabetes. Understanding these variants will provide a basis for developing targeted therapy to improve mitochondrial function and metabolic health. This article reviews the impact of mtDNA variants in diabetes, specifically with regards to the m.3243 A > G variant effects on mitochondrial function and insulin secretion and other mtDNA variants that contribute to diabetes susceptibility, particularly ND4 and tRNA Ala gene variants. Data from extant literature were synthesised to obtain an understanding of how mtDNA variants affect diabetes pathogenesis. The main defect for MIDD is the m.3243 A > G variant, which comprises enhanced susceptibility to metabolic syndrome and type 2 diabetes, followed by mitochondrial dysfunction, insulin resistance, and beta-cell dysfunction. Other mtDNA variants have also been reported to enhance diabetes susceptibility through mitochondrial dysfunction and insulin resistance. Increased production of reactive oxygen species (ROS) resulting from mitochondrial malfunction adds to metabolic and tissue damage. This happens in tissues crucial to glucose homeostasis, and it represents an important contribution of mitochondrial dysfunction to metabolic disturbances in diabetes. These mechanisms would underlie the rationale for developing targeted therapies to preserve mitochondrial function and, hence improve the metabolic health of diabetic patients.
Collapse
Affiliation(s)
- Praveen Kumar K S
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
- SIG-TRRG, JSS Medical College and Hospitals, JSS-AHER, Mysuru - 570015, India
| | - M N Jyothi
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
- SIG-TRRG, JSS Medical College and Hospitals, JSS-AHER, Mysuru - 570015, India
| |
Collapse
|
2
|
Lin X, Zhou Y, Xue L. Mitochondrial complex I subunit MT-ND1 mutations affect disease progression. Heliyon 2024; 10:e28808. [PMID: 38596130 PMCID: PMC11002282 DOI: 10.1016/j.heliyon.2024.e28808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Mitochondrial respiratory chain complex I is an important component of the oxidative respiratory chain, with the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) being one of the core subunits. MT-ND1 plays a role in the assembly of complex I and its enzymatic function. MT-ND1 gene mutation affects pathophysiological processes, such as interfering with the early assembly of complex I, affecting the ubiquinone binding domain and proton channel of complex I, and affecting oxidative phosphorylation, thus leading to the occurrence of diseases. The relationship between MT-ND1 gene mutation and disease has been has received increasing research attention. Therefore, this article reviews the impact of MT-ND1 mutations on disease progression, focusing on the impact of such mutations on diseases and their possible mechanisms, as well as the application of targeting MT-ND1 gene mutations in disease diagnosis and treatment. We aim to provide a new perspective leading to a more comprehensive understanding of the relationship between MT-ND1 gene mutations and diseases.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
3
|
Buonfiglio PI, Menazzi S, Francipane L, Lotersztein V, Ferreiro V, Elgoyhen AB, Dalamón V. Mitochondrial DNA variants in a cohort from Argentina with suspected Leber's hereditary optic neuropathy (LHON). PLoS One 2023; 18:e0275703. [PMID: 36827238 PMCID: PMC9956067 DOI: 10.1371/journal.pone.0275703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
The present study investigates the spectrum and analysis of mitochondrial DNA (mtDNA) variants associated with Leber hereditary optic neuropathy (LHON) in an Argentinean cohort, analyzing 3 LHON-associated mitochondrial genes. In 32% of the cases, molecular confirmation of the diagnosis could be established, due to the identification of disease-causing variants. A total of 54 variants were observed in a cohort of 100 patients tested with direct sequencing analysis. The frequent causative mutations m.11778G>A in MT-ND4, m.3460G>A in MT-ND1, and m.14484T>C in MT-ND6 were identified in 28% of the cases of our cohort. Secondary mutations in this Argentinean LHON cohort were m.11253T>C p.Ile165Thr in MT-ND4, identified in three patients (3/100, 3%) and m.3395A>G p.Tyr30Cys in MT-ND1, in one of the patients studied (1%). This study shows, for the first time, the analysis of mtDNA variants in patients with a probable diagnosis of LHON in Argentina. Standard molecular methods are an effective first approach in order to achieve genetic diagnosis of the disease, leaving NGS tests for those patients with negative results.
Collapse
Affiliation(s)
- Paula I. Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas - INGEBI / CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Menazzi
- División Genética, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Liliana Francipane
- División Genética, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Lotersztein
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas - INGEBI / CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- División Genética, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, Argentina
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio Genos, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas - INGEBI / CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
4
|
Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines 2023; 11:biomedicines11020532. [PMID: 36831068 PMCID: PMC9953118 DOI: 10.3390/biomedicines11020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.
Collapse
|
5
|
Alkhaldi HA, Phan DH, Vik SB. Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life (Basel) 2022; 12:1934. [PMID: 36431069 PMCID: PMC9696053 DOI: 10.3390/life12111934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The most common causes of mitochondrial dysfunction and disease include mutations in subunits and assembly factors of Complex I. Numerous mutations in the mitochondrial gene ND1 have been identified in humans. Currently, a bacterial model system provides the only method for rapid construction and analysis of mutations in homologs of human ND1. In this report, we have identified nine mutations in human ND1 that are reported to be pathogenic and are located at subunit interfaces. Our hypothesis was that these mutations would disrupt Complex I assembly. Seventeen mutations were constructed in the homologous nuoH gene in an E. coli model system. In addition to the clinical mutations, alanine substitutions were constructed in order to distinguish between a deleterious effect from the introduction of the mutant residue and the loss of the original residue. The mutations were moved to an expression vector containing all thirteen genes of the E. coli nuo operon coding for Complex I. Membrane vesicles were prepared and rates of deamino-NADH oxidase activity and proton translocation were measured. Samples were also tested for assembly by native gel electrophoresis and for expression of NuoH by immunoblotting. A range of outcomes was observed: Mutations at four of the sites allow normal assembly with moderate activity (50−76% of wild type). Mutations at the other sites disrupt assembly and/or activity, and in some cases the outcomes depend upon the amino acid introduced. In general, the outcomes are consistent with the proposed pathogenicity in humans.
Collapse
Affiliation(s)
| | | | - Steven B. Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
6
|
Müller-Nedebock AC, Pfaff AL, Pienaar IS, Kõks S, van der Westhuizen FH, Elson JL, Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci 2022; 14:921412. [PMID: 35912088 PMCID: PMC9330142 DOI: 10.3389/fnagi.2022.921412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson’s disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur “out-of-place” on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson’s Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.
Collapse
Affiliation(s)
- Amica C. Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Ilse S. Pienaar
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | | | - Joanna L. Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Soraya Bardien,
| |
Collapse
|
7
|
Jiang P, Zhu T, Liu J, Tao X, Xue Z, Tao Y, Chen H, Zeng X, Zhu W, Shu Q, Yu L. Mitochondrial DNA variants spectrum and the association with chronic Tic disorders. Eur J Neurol 2022; 29:3187-3196. [PMID: 35781907 DOI: 10.1111/ene.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tic disorders (TD) are childhood-onset neuropsychiatric disorders characterized by single or multiple sudden, rapid, recurrent, and motor tics and/or vocal tics. Several nuclear genes that involved in mitochondrial functions suggest potential role of mitochondria in tic deficit. METHODS To evaluate the association of mitochondrial DNA (mtDNA) variants with Tic disorders, we screened the whole mitochondrial genomes in 493 TD patients and 109 age- and sex matched healthy controls using next-generation sequencing technology. RESULTS A total of 1918 mtDNA variants including 1220 variants in patients only, 154 variants in controls only, and 544 variants shared by both cases and controls were identified. We found higher number of overall mtDNA variants in TD patients (P =0.00028). The variant density in MT-ATP6/8 and MT-CYB coding regions had significant difference between TD patients and controls (P=0.0025 and P=0.003, respectively). Furthermore, we observed a significant association of 15 common variants with TD based on additive model, including m.14766C>T, m.14783T>C, m.14905G>A, and m.15301G>A in MT-CYB; m.4769A>G, m.10398A>G, m.12705C>T, and m.12850A>G in MT-ND genes; m.7028C>T in MT-CO1; m.8701A>G in MT-ATP6; two noncoding variants with m.16223C>T, m.5580T>C; and three rRNA variants with m.1438A>G and m.750A>G in RNR1, and m.2352T>C in RNR2. CONCLUSIONS Our data provide the evidence of mtDNA variants associated with tic disorders. The accumulation of the heteroplasmic levels may increase the risk of TD. Replication studies with larger samples are necessary to understand the pathogenesis of TD.
Collapse
Affiliation(s)
- Peifang Jiang
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajing Liu
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziru Xue
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiling Tao
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongyu Chen
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojing Zeng
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiyi Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lan Yu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|