1
|
Feng Y, Yuan Y, Xia H, Wang Z, Che Y, Hu Z, Deng J, Li F, Wu Q, Bian Z, Zhou H, Shen D, Tang Q. OSMR deficiency aggravates pressure overload-induced cardiac hypertrophy by modulating macrophages and OSM/LIFR/STAT3 signalling. J Transl Med 2023; 21:290. [PMID: 37120549 PMCID: PMC10149029 DOI: 10.1186/s12967-023-04163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Oncostatin M (OSM) is a secreted cytokine of the interleukin (IL)-6 family that induces biological effects by activating functional receptor complexes of the common signal transducing component glycoprotein 130 (gp130) and OSM receptor β (OSMR) or leukaemia inhibitory factor receptor (LIFR), which are mainly involved in chronic inflammatory and cardiovascular diseases. The effect and underlying mechanism of OSM/OSMR/LIFR on the development of cardiac hypertrophy remains unclear. METHODS AND RESULTS OSMR-knockout (OSMR-KO) mice were subjected to aortic banding (AB) surgery to establish a model of pressure overload-induced cardiac hypertrophy. Echocardiographic, histological, biochemical and immunological analyses of the myocardium and the adoptive transfer of bone marrow-derived macrophages (BMDMs) were conducted for in vivo studies. BMDMs were isolated and stimulated with lipopolysaccharide (LPS) for the in vitro study. OSMR deficiency aggravated cardiac hypertrophy, fibrotic remodelling and cardiac dysfunction after AB surgery in mice. Mechanistically, the loss of OSMR activated OSM/LIFR/STAT3 signalling and promoted a proresolving macrophage phenotype that exacerbated inflammation and impaired cardiac repair during remodelling. In addition, adoptive transfer of OSMR-KO BMDMs to WT mice after AB surgery resulted in a consistent hypertrophic phenotype. Moreover, knockdown of LIFR in myocardial tissue with Ad-shLIFR ameliorated the effects of OSMR deletion on the phenotype and STAT3 activation. CONCLUSIONS OSMR deficiency aggravated pressure overload-induced cardiac hypertrophy by modulating macrophages and OSM/LIFR/STAT3 signalling, which provided evidence that OSMR might be an attractive target for treating pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yizhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Hongxia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhaopeng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhefu Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Jiangyang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Fangfang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|