1
|
Benucci S, Ruiz A, Franchini M, Ruggiero L, Zoppi D, Sitsapesan R, Lindsay C, Pelczar P, Pietrangelo L, Protasi F, Treves S, Zorzato F. A novel, patient-derived RyR1 mutation impairs muscle function and calcium homeostasis in mice. J Gen Physiol 2024; 156:e202313486. [PMID: 38445312 PMCID: PMC10911087 DOI: 10.1085/jgp.202313486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
RYR1 is the most commonly mutated gene associated with congenital myopathies, a group of early-onset neuromuscular conditions of variable severity. The functional effects of a number of dominant RYR1 mutations have been established; however, for recessive mutations, these effects may depend on multiple factors, such as the formation of a hypomorphic allele, or on whether they are homozygous or compound heterozygous. Here, we functionally characterize a new transgenic mouse model knocked-in for mutations identified in a severely affected child born preterm and presenting limited limb movement. The child carried the homozygous c.14928C>G RYR1 mutation, resulting in the p.F4976L substitution. In vivo and ex vivo assays revealed that homozygous mice fatigued sooner and their muscles generated significantly less force compared with their WT or heterozygous littermates. Electron microscopy, biochemical, and physiological analyses showed that muscles from RyR1 p.F4976L homozygous mice have the following properties: (1) contain fewer calcium release units and show areas of myofibrillar degeneration, (2) contain less RyR1 protein, (3) fibers show smaller electrically evoked calcium transients, and (4) their SR has smaller calcium stores. In addition, single-channel recordings indicate that RyR1 p.F4976L exhibits higher Po in the presence of 100 μM [Ca2+]. Our mouse model partly recapitulates the clinical picture of the homozygous human patient and provides significant insight into the functional impact of this mutation. These results will help understand the pathology of patients with similar RYR1 mutations.
Collapse
Affiliation(s)
- Sofia Benucci
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Alexis Ruiz
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Martina Franchini
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Dario Zoppi
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | - Chris Lindsay
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Laura Pietrangelo
- DMSI, Department of Medicine and Aging Sciences and CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- DMSI, Department of Medicine and Aging Sciences and CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Susan Treves
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Zorzato
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Bachmann C, Franchini M, Van den Bersselaar LR, Kruijt N, Voermans NC, Bouman K, Kamsteeg EJ, Knop KC, Ruggiero L, Santoro L, Nevo Y, Wilmshurst J, Vissing J, Sinnreich M, Zorzato D, Muntoni F, Jungbluth H, Zorzato F, Treves S. Targeted transcript analysis in muscles from patients with genetically diverse congenital myopathies. Brain Commun 2022; 4:fcac224. [PMID: 36196089 PMCID: PMC9525005 DOI: 10.1093/braincomms/fcac224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital myopathies are a group of early onset muscle diseases of variable severity often with characteristic muscle biopsy findings and involvement of specific muscle types. The clinical diagnosis of patients typically relies on histopathological findings and is confirmed by genetic analysis. The most commonly mutated genes encode proteins involved in skeletal muscle excitation–contraction coupling, calcium regulation, sarcomeric proteins and thin–thick filament interaction. However, mutations in genes encoding proteins involved in other physiological functions (for example mutations in SELENON and MTM1, which encode for ubiquitously expressed proteins of low tissue specificity) have also been identified. This intriguing observation indicates that the presence of a genetic mutation impacts the expression of other genes whose product is important for skeletal muscle function. The aim of the present investigation was to verify if there are common changes in transcript and microRNA expression in muscles from patients with genetically heterogeneous congenital myopathies, focusing on genes encoding proteins involved in excitation–contraction coupling and calcium homeostasis, sarcomeric proteins, transcription factors and epigenetic enzymes. Our results identify RYR1, ATPB2B and miRNA-22 as common transcripts whose expression is decreased in muscles from congenital myopathy patients. The resulting protein deficiency may contribute to the muscle weakness observed in these patients. This study also provides information regarding potential biomarkers for monitoring disease progression and response to pharmacological treatments in patients with congenital myopathies.
Collapse
Affiliation(s)
- Christoph Bachmann
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Martina Franchini
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Luuk R Van den Bersselaar
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital , Nijmegen , The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nick Kruijt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Clinical Genetics, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre , Nijmegen , The Netherlands
| | - Karl Christian Knop
- Muskelhistologisches Labor, Neurologische Abteilung, Asklepios Klinik St. Georg , Lohmuehlenstraße 5, Hamburg 20099 , Germany
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Lucio Santoro
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Yoram Nevo
- Institute of Neurology, Schneider Children’s Medical Center of Israel , Petah Tiqva , Israel
| | - Jo Wilmshurst
- Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town , Cape Town , South Africa
| | - John Vissing
- Department of Neurology, section 8077, Rigshospitalet, University of Copenhagen , Blegdamsvej 9, Copenhagen DK-2100 , Denmark
| | - Michael Sinnreich
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Daniele Zorzato
- GKT School of Medical Education, King’s College London , Hodgkin Building, Newcomen Street, London SE1 1UL , UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL, Institute of Child Health , London , UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre , London , UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, St. Thomas’ Hospital , London , UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London , London , UK
- Randall Center for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King’s College , London , UK
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| |
Collapse
|
3
|
Elbaz M, Ruiz A, Nicolay S, Tupini C, Bachmann C, Eckhardt J, Benucci S, Pelczar P, Treves S, Zorzato F. Bi-allelic expression of the RyR1 p.A4329D mutation decreases muscle strength in slow-twitch muscles in mice. J Biol Chem 2020; 295:10331-10339. [PMID: 32499372 DOI: 10.1074/jbc.ra120.013846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Mutations in the ryanodine receptor 1 (RYR1) gene are associated with several human congenital myopathies, including the dominantly inherited central core disease and exercise-induced rhabdomyolysis, and the more severe recessive phenotypes, including multiminicore disease, centronuclear myopathy, and congenital fiber type disproportion. Within the latter group, those carrying a hypomorphic mutation in one allele and a missense mutation in the other are the most severely affected. Because of nonsense-mediated decay, most hypomorphic alleles are not expressed, resulting in homozygous expression of the missense mutation allele. This should result in 50% reduced expression of the ryanodine receptor in skeletal muscle, but its observed content is even lower. To study in more detail the biochemistry and pathophysiology of recessive RYR1 myopathies, here we investigated a mouse model we recently generated by analyzing the effect of bi-allelic versus mono-allelic expression of the RyR1 p.A4329D mutation. Our results revealed that the expression of two alleles carrying the same mutation or of one allele with the mutation in combination with a hypomorphic allele does not result in functionally equal outcomes and impacts skeletal muscles differently. In particular, the bi-allelic RyR1 p.A4329D mutation caused a milder phenotype than its mono-allelic expression, leading to changes in the biochemical properties and physiological function only of slow-twitch muscles and largely sparing fast-twitch muscles. In summary, bi-allelic expression of the RyR1 p.A4329D mutation phenotypically differs from mono-allelic expression of this mutation in a compound heterozygous carrier.
Collapse
Affiliation(s)
- Moran Elbaz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Alexis Ruiz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sven Nicolay
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Chiara Tupini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Christoph Bachmann
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Jan Eckhardt
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sofia Benucci
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland .,Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|