1
|
Craven GB, Chu H, Sun JD, Carelli JD, Coyne B, Chen H, Chen Y, Ma X, Das S, Kong W, Zajdlik AD, Yang KS, Reisberg SH, Thompson PA, Lipford JR, Taunton J. Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation. Nature 2025; 637:205-214. [PMID: 39506119 DOI: 10.1038/s41586-024-08176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Somatic alterations in the oncogenic kinase AKT1 have been identified in a broad spectrum of solid tumours. The most common AKT1 alteration replaces Glu17 with Lys (E17K) in the regulatory pleckstrin homology domain1, resulting in constitutive membrane localization and activation of oncogenic signalling. In clinical studies, pan-AKT inhibitors have been found to cause dose-limiting hyperglycaemia2-6, which has motivated the search for mutant-selective inhibitors. We exploited the E17K mutation to design allosteric, lysine-targeted salicylaldehyde inhibitors with selectivity for AKT1 (E17K) over wild-type AKT paralogues, a major challenge given the presence of three conserved lysines near the allosteric site. Crystallographic analysis of the covalent inhibitor complex unexpectedly revealed an adventitious tetrahedral zinc ion that coordinates two proximal cysteines in the kinase activation loop while simultaneously engaging the E17K-imine conjugate. The salicylaldimine complex with AKT1 (E17K), but not that with wild-type AKT1, recruits endogenous Zn2+ in cells, resulting in sustained inhibition. A salicylaldehyde-based inhibitor was efficacious in AKT1 (E17K) tumour xenograft models at doses that did not induce hyperglycaemia. Our study demonstrates the potential to achieve exquisite residence-time-based selectivity for AKT1 (E17K) by targeting the mutant lysine together with Zn2+ chelation by the resulting salicylaldimine adduct.
Collapse
Affiliation(s)
- Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hang Chu
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Hao Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaolei Ma
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Wayne Kong
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Kin S Yang
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
He S, Zhu Y, Chauhan S, Tavakol DN, Lee JH, Berris RBL, Xu C, Lee JH, Lee C, Cai S, McElroy S, Vunjak-Novakovic G, Tomer R, Azizi E, Xu B, Lao YH, Leong KW. Human vascular organoids with a mosaic AKT1 mutation recapitulate Proteus syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577324. [PMID: 38328122 PMCID: PMC10849631 DOI: 10.1101/2024.01.26.577324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Vascular malformation, a key clinical phenotype of Proteus syndrome, lacks effective models for pathophysiological study and drug development due to limited patient sample access. To bridge this gap, we built a human vascular organoid model replicating Proteus syndrome's vasculature. Using CRISPR/Cas9 genome editing and gene overexpression, we created induced pluripotent stem cells (iPSCs) embodying the Proteus syndrome-specific AKTE17K point mutation for organoid generation. Our findings revealed that AKT overactivation in these organoids resulted in smaller sizes yet increased vascular connectivity, although with less stable connections. This could be due to the significant vasculogenesis induced by AKT overactivation. This phenomenon likely stems from boosted vasculogenesis triggered by AKT overactivation, leading to increased vascular sprouting. Additionally, a notable increase in dysfunctional PDGFRβ+ mural cells, impaired in matrix secretion, was observed in these AKT-overactivated organoids. The application of AKT inhibitors (ARQ092, AZD5363, or GDC0068) reversed the vascular malformations; the inhibitors' effectiveness was directly linked to reduced connectivity in the organoids. In summary, our study introduces an innovative in vitro model combining organoid technology and gene editing to explore vascular pathophysiology in Proteus syndrome. This model not only simulates Proteus syndrome vasculature but also holds potential for mimicking vasculatures of other genetically driven diseases. It represents an advance in drug development for rare diseases, historically plagued by slow progress.
Collapse
Affiliation(s)
- Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY10027, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Jong Ha Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jounghyun H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Caleb Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah Cai
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shannon McElroy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Raju Tomer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo NY 14214, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|