1
|
Huang Y, Ju C, Luo J, Li Y. Exploring the shared genetic basis of attention-deficit/hyperactivity disorder and obstructive sleep apnea: A multi-omics analysis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111369. [PMID: 40246054 DOI: 10.1016/j.pnpbp.2025.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Observational studies have suggested an association between attention-deficit/hyperactivity disorder (ADHD) and obstructive sleep apnea (OSA), but these findings are often inconsistent due to potential biases from medication use, and varying diagnostic criteria. Genetic analyses can help mitigate these confounding factors, providing additional evidence. METHODS This study evaluated the genetic correlations between ADHD and OSA using Genome-wide association study (GWAS) summary data, applying linkage disequilibrium score regression (LDSC) and SUPER GeNetic cOVariance Analyzer (SUPERGNOVA). Cross-trait association and colocalization analysis identify potential pleiotropic loci. Tissue enrichment analysis and gene-level analysis of shared genes between OSA and ADHD was conducted. Additionally, bidirectional Mendelian randomization was used to assess potential causal relationships. RESULTS We found significant genetic correlations between ADHD and OSA (rg = 0.309, p = 3.252E-27), and identified 8 novel pleiotropic loci through cross-trait association analysis. Tissue enrichment analysis showed that these shared genes were primarily concentrated in brain tissues, particularly in deep gray matter regions, and were associated with immune and inflammatory pathways. Forward Mendelian Randomization analysis showed that ADHD was significantly associated with the risk of OSA (OR 1.070, 95 % CI 1.013-1.130, p = 0.016), and reverse analysis showed that OSA was significantly associated with the risk of ADHD (OR 1.240, 95 % CI 1.106-1.390, p = 2.213E-4). CONCLUSION The findings of this study show a significant positive genetic correlation between ADHD and OSA and each is a risk factor for the other. Inflammation in specific brain regions may be the underlying mechanism for their comorbidity.
Collapse
Affiliation(s)
- Yijie Huang
- Department of Sleep Medicine, Mental Health Center of Shantou University, Shantou, Guangdong Province, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong Province, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Chao Ju
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Jie Luo
- Department of Sleep Medicine, Mental Health Center of Shantou University, Shantou, Guangdong Province, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong Province, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China
| | - Yun Li
- Department of Sleep Medicine, Mental Health Center of Shantou University, Shantou, Guangdong Province, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong Province, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, Guangdong Province, China.
| |
Collapse
|
2
|
Bian X, Chen L, Bian X, Li L, Liu D, Liu S, Xu L, Huo X, Yang X. Protective effect of Tibetan medicine Qiwei Tiexie pills on liver injury induced by acetaminophen overdose: An integrated strategy of network pharmacology, metabolomics and transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155221. [PMID: 38039903 DOI: 10.1016/j.phymed.2023.155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Drug-induced liver injury, particularly from acetaminophen (APAP), has emerged as a significant public health concern. Unfortunately, there is currently no effective treatment strategy available. Qiwei Tiexie pills (QWTX), a traditional Tibetan medicine, have demonstrated considerable clinical efficacy in treating various liver diseases. Nevertheless, the protective effect of QWTX against drug-induced liver injury and its underlying mechanism remains poorly understood. PURPOSE This study aimed to assess the therapeutic potential of QWTX, a Tibetan medicine, in an animal model of APAP-induced liver injury. Additionally, we sought to investigate the molecular mechanism through which QWTX exerts its effects. METHODS We employed LC-MS and network pharmacology to predict the potential targets of QWTX in drug-induced liver injury. Subsequently, we employed HE staining, transcriptomics, metabolomics, and qRT-PCR to analyze the mechanism underlying QWTX treatment in drug-induced liver injury. RESULTS Network pharmacology analysis revealed that the active components of QWTX are involved in inflammatory and drug metabolism-related pathways. In mouse models, pretreatment with QWTX effectively mitigated the elevated levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory factors (IL-1β, IL-6, and TNF-α) induced by APAP overdose. Moreover, APAP inhibited 1459 differentially expressed genes (DEGs) and 874 differential accumulation metabolites (DAMs), while QWTX promoted their expression. Conversely, APAP promoted 874 genes and 119 metabolites, which were inhibited by QWTX. Further analysis demonstrated that QWTX ameliorated the metabolic disorders induced by APAP overdose and potentially exerted a protective effect by inhibiting the expression of critical genes in crucial inflammatory pathways. QWTX also up-regulated antioxidant enzymes, thereby mitigating the oxidative stress resulting from APAP overdose. CONCLUSION QWTX treatment effectively protects against APAP-induced liver damage in mice. Transcriptomic and metabolomic analyses further revealed that QWTX ameliorated hepatic metabolic disorders induced by APAP overdose while significantly suppressing the inflammatory response and oxidative stress associated with drug-induced liver injury. This study provides a new insight into the treatment of drug-induced liver injury by the TCM system and provides a basis for the development of new therapies for drug-induced liver injury by QWTX and its active ingredients.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lizhu Chen
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuefeng Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lele Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Dan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Siying Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuyang Huo
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaohang Yang
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
3
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Hafeez N, Kirillova A, Yue Y, Rao RJ, Kelly NJ, El Khoury W, Al Aaraj Y, Tai Y, Handen A, Tang Y, Jiang D, Wu T, Zhang Y, McNamara D, Kudryashova TV, Goncharova EA, Goncharov D, Bertero T, Nouraie M, Li G, Sun W, Chan SY. Single Nucleotide Polymorphism rs9277336 Controls the Nuclear Alpha Actinin 4-Human Leukocyte Antigen-DPA1 Axis and Pulmonary Endothelial Pathophenotypes in Pulmonary Arterial Hypertension. J Am Heart Assoc 2023; 12:e027894. [PMID: 36974749 PMCID: PMC10122886 DOI: 10.1161/jaha.122.027894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex, fatal disease where disease severity has been associated with the single nucleotide polymorphism (SNP) rs2856830, located near the human leukocyte antigen DPA1 (HLA-DPA1) gene. We aimed to define the genetic architecture of functional variants associated with PAH disease severity by identifying allele-specific binding transcription factors and downstream targets that control endothelial pathophenotypes and PAH. Methods and Results Electrophoretic mobility shift assays of oligonucleotides containing SNP rs2856830 and 8 SNPs in linkage disequilibrium revealed functional SNPs via allele-imbalanced binding to human pulmonary arterial endothelial cell nuclear proteins. DNA pulldown proteomics identified SNP-binding proteins. SNP genotyping and clinical correlation analysis were performed in 84 patients with PAH at University of Pittsburgh Medical Center and in 679 patients with PAH in the All of Us database. SNP rs9277336 was identified as a functional SNP in linkage disequilibrium (r2>0.8) defined by rs2856830, and the minor allele was associated with decreased hospitalizations and improved cardiac output in patients with PAH, an index of disease severity. SNP pulldown proteomics showed allele-specific binding of nuclear ACTN4 (alpha actinin 4) protein to rs9277336 minor allele. Both ACTN4 and HLA-DPA1 were downregulated in pulmonary endothelium in human patients and rodent models of PAH. Via transcriptomic and phenotypic analyses, knockdown of HLA-DPA1 phenocopied knockdown of ACTN4, both similarly controlling cell structure pathways, immune pathways, and endothelial dysfunction. Conclusions We defined the pathogenic activity of functional SNP rs9277336, entailing the allele-specific binding of ACTN4 and controlling expression of the neighboring HLA-DPA1 gene. Through inflammatory or genetic means, downregulation of this ACTN4-HLA-DPA1 regulatory axis promotes endothelial pathophenotypes, providing a mechanistic explanation for the association between this SNP and PAH outcomes.
Collapse
Affiliation(s)
- Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yunshan Yue
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
- School of MedicineTsinghua UniversityBeijingChina
| | - Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yi‐Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Adam Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Danli Jiang
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Ting Wu
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Dennis McNamara
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Tatiana V. Kudryashova
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Dmitry Goncharov
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal MedicineUniversity of California DavisDavisCA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, UMR7275, IPMCValbonneFrance
| | - Mehdi Nouraie
- Division of Pulmonary Allergy and Critical Care Medicine, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Gang Li
- The Aging InstituteUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| |
Collapse
|
5
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|