1
|
Chanoine JP, Thompson DM, Lehman A. Diabetes Associated With Maternally Inherited Diabetes and Deafness (MIDD): From Pathogenic Variant to Phenotype. Diabetes 2025; 74:153-163. [PMID: 39556456 PMCID: PMC11755681 DOI: 10.2337/db24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
ARTICLE HIGHLIGHTS Maternally inherited diabetes and deafness (MIDD) is a mitochondrial disorder characterized primarily by hearing impairment and diabetes. m.3243A>G, the most common phenotypic variant, causes a complex rewiring of the cell with discontinuous remodeling of both mitochondrial and nuclear genome expressions. We propose that MIDD depends on a combination of insulin resistance and impaired β-cell function that occurs in the presence of high skeletal muscle heteroplasmy (approximately ≥60%) and more moderate cell heteroplasmy (∼25%-72%) for m.3243A>G. Understanding the complex mechanisms of MIDD is necessary to develop disease-specific management guidelines that are presently lacking.
Collapse
Affiliation(s)
- Jean-Pierre Chanoine
- Endocrinology and Diabetes Unit, Department of Pediatrics, BC Children’s Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - David M. Thompson
- Division of Endocrinology, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Panja C, Niedzwiecka K, Baranowska E, Poznanski J, Kucharczyk R. Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 2023; 13:9972. [PMID: 37340059 DOI: 10.1038/s41598-023-36637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.
Collapse
Affiliation(s)
- Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 2023; 16:307138. [PMID: 37083953 PMCID: PMC10151828 DOI: 10.1242/dmm.049783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Camille Charles
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Jean-Paul di Rago
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
6
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032 T > C. Hum Mol Genet 2022; 32:1313-1323. [PMID: 36434790 PMCID: PMC10077503 DOI: 10.1093/hmg/ddac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial DNA mutation m.9032 T > C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032 T > C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032 T > C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032 T > C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Camille Charles
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Tribouillard-Tanvier D, Dautant A, Godard F, Charles C, Panja C, di Rago JP, Kucharczyk R. Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. Methods Mol Biol 2022; 2497:221-242. [PMID: 35771445 DOI: 10.1007/978-1-0716-2309-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.
Collapse
Affiliation(s)
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
A Theoretical Model of Mitochondrial ATP Synthase Deficiencies. The Role of Mitochondrial Carriers. Processes (Basel) 2021. [DOI: 10.3390/pr9081424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The m.8993T>G mutation of the mitochondrial MT-ATP6 gene is associated with NARP syndrome (neuropathy, ataxia and retinitis pigmentosa). The equivalent point mutation introduced in yeast Saccharomyces cerevisiae mitochondrial DNA considerably reduced the activity of ATP synthase and of cytochrome-c-oxidase, preventing yeast growth on oxidative substrates. The overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) was able to rescue the growth on the oxidative substrate by increasing the substrate-level phosphorylation of ADP coupled to the conversion of α-ketoglutarate (AKG) into succinate with an increase in Complex IV activity. Previous studies showed that equivalent point mutations in ATP synthase behave similarly and can be rescued by Odc1p overexpression and/or the uncoupling of OXPHOS from ATP synthesis. In order to better understand the mechanism of the ATP synthase mutation bypass, we developed a core model of mitochondrial metabolism based on AKG as a respiratory substrate. We describe the different possible metabolite outputs and the ATP/O ratio values as a function of ATP synthase inhibition.
Collapse
|