1
|
Piscitelli E, Abeni E, Balbino C, Angeli E, Cocola C, Pelucchi P, Palizban M, Diaspro A, Götte M, Zucchi I, Reinbold RA. Glycosylation Regulation by TMEM230 in Aging and Autoimmunity. Int J Mol Sci 2025; 26:2412. [PMID: 40141059 PMCID: PMC11942208 DOI: 10.3390/ijms26062412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the specific signatures of glycans and glycosylated factors present on the cell plasma membrane or in the stromal components of tissue. Glycosylated factors are generated in nearly innumerable variations in nature, allowing for the immensely diverse role of these factors in aging and flexibility necessary for cellular interactions in tissue functionality. In previous studies, we showed that differential expression of TMEM230, an endoplasmic reticulum (ER) protein was associated with specific signatures of enzymes regulating glycan synthesis and processing and glycosylation in rheumatoid arthritis synovial tissue using single-cell transcript sequencing. In this current study, we characterize the genes and pathways co-modulated in all cell types of the synovial tissue with the enzymes regulating glycan synthesis and processing, as well as glycosylation. Genes and biological and molecular pathways associated with hallmarks of aging were in mitochondria-dependent oxidative phosphorylation and reactive oxygen species synthesis, ER-dependent stress and unfolded protein response, DNA repair (UV response and P53 signaling pathways), and senescence, glycolysis and apoptosis regulation through PI3K-AKT-mTOR signaling have been shown to play important roles in aging or neurodegeneration (such as Parkinson's and Alzheimer's disease). We propose that the downregulation of TMEM230 and RNASET2 may represent a paradigm for the study of age-dependent autoimmune disorders due to their role in regulating glycosylation, unfolded protein response, and PI3K-AKT-mTOR signaling.
Collapse
Affiliation(s)
- Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | | | - Elena Angeli
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
| | - Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Alberto Diaspro
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
- Nanoscopy, Istituto Italiano Tecnologia, 16152 Genoa, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| | - Rolland A. Reinbold
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
2
|
Zhang W, Peng H, Yang D, Song G, He J, Zhou Y, Huang C, Huang B. Absence of motor impairments or pathological changes in TMEM230 knockout rats. Neurosci Lett 2024; 837:137921. [PMID: 39106917 DOI: 10.1016/j.neulet.2024.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Parkinson's disease (PD), which is the second most common neurodegenerative disorder, is characterized by progressive movement impairment and loss of midbrain dopaminergic neurons in the substantia nigra. Although mutations in TMEM230 are linked to familial PD, the pathogenic mechanism underlying TMEM230-associated PD remains to be elucidated. To explore the effect of TMEM230 depletion in vivo, we created TMEM230 knockout rats using CRISPR-Cas9 technology. TMEM230 knockout rats did not exhibit any core features of PD, including impaired motor function, loss of dopaminergic neurons in the substantia nigra, or altered expression of proteins related to autophagy, the Rab family, or vesicular trafficking. In addition, no glial reactions were observed in TMEM230 knockout rats. These results indicate that depletion of TMEM230 may not lead to dopaminergic neuron degeneration in rats, further supporting that PD-associated TMEM230 mutations lead to dopaminergic neuron death by gain-of-toxic function.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Changqing District, Shandong, China
| | - Hao Peng
- Department of Neurosurgery, The Second People's Hospital of Hainan Province, Hainan, China; Department of Neurosurgery, Hainan General Hospital, Hainan Medical University, Hainan, China
| | - Daihe Yang
- Department of Anesthesiology, the Affiliated Second People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Juan He
- Hospital of Integrated Traditional Chinese and Western Medicine in Shanxi Province, Taiyuan, Shanxi 030012, China
| | - Yun Zhou
- Hospital of Integrated Traditional Chinese and Western Medicine in Shanxi Province, Taiyuan, Shanxi 030012, China
| | - Cao Huang
- Department of Pathology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Bo Huang
- Hospital of Integrated Traditional Chinese and Western Medicine in Shanxi Province, Taiyuan, Shanxi 030012, China; Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China; Medical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
3
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhao Y, Zhang K, Pan H, Wang Y, Zhou X, Xiang Y, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Tang B, Liu Z. Genetic Analysis of Six Transmembrane Protein Family Genes in Parkinson's Disease in a Large Chinese Cohort. Front Aging Neurosci 2022; 14:889057. [PMID: 35860667 PMCID: PMC9289399 DOI: 10.3389/fnagi.2022.889057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Parkinson's disease (PD) is a neurodegenerative disorder with the manifestation of motor symptoms and non-motor symptoms. Previous studies have indicated the role of several transmembrane (TMEM) protein family genes in PD pathogenesis. Materials and Methods In order to better investigate the genetic role of PD-related TMEM protein family genes in PD, including TMEM230, TMEM59, TMEM108, TMEM163, TMEM175, and TMEM229B, 1,917 sporadic early onset PD (sEOPD) or familial PD (FPD) patients and 1,652 healthy controls were analyzed by whole-exome sequencing (WES) while 1,962 sporadic late-onset PD (sLOPD) and 1,279 healthy controls were analyzed by whole-genome sequencing (WGS). Rare and common variants for each gene were included in the analysis. Results One hundred rare damaging or loss of function variants of six genes were found at the threshold of MAF < 0.1%. Three rare Dmis variants of TMEM230 were specifically identified in PD. Rare missense variants of TMEM59 were statistically significantly associated with PD in the WES cohort, indicating the role of TMEM59 in FPD and sEOPD. Rare missense variants of TMEM108 were suggestively associated with PD in the WGS cohort, indicating the potential role of TMEM108 in sLOPD. The rare variant of the other three genes and common variants of six genes were not significantly associated with PD. Conclusion We performed a large case-control study to systematically investigate the role of several PD-related TMEM protein family genes in PD. We identified three PD-specific variants in TMEM230, the significant association of TMEM59 with FPD, and sEOPD and the suggestive association of TMEM108 with sLOPD.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
5
|
Ma C, Wang X, Smith WW, Liu Z. VPS35 Protects Against TMEM230-mutation-induced Progressive Locomotor Deficits in Drosophila. Neurosci Bull 2022; 38:652-656. [PMID: 35536503 DOI: 10.1007/s12264-022-00862-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chao Ma
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiaobo Wang
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21287, USA
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21287, USA.
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Zhang J, Li K, Wang X, Smith AM, Ning B, Liu Z, Liu C, Ross CA, Smith WW. Curcumin Reduced H 2O 2- and G2385R-LRRK2-Induced Neurodegeneration. Front Aging Neurosci 2021; 13:754956. [PMID: 34720999 PMCID: PMC8555697 DOI: 10.3389/fnagi.2021.754956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 gene (LRRK2) are the most frequent genetic factors contributing to Parkinson's disease (PD). G2385R-LRRK2 increases the risk for PD susceptibility in the Chinese population. However, the pathological role of G2385R-LRRK2 is not clear. In this study, we investigate the roles of G2385R-LRRK2 in neurodegeneration underlying PD pathogenesis using cell biology and pharmacology approaches. We demonstrated that expression of G2385R-LRRK2-induced neurotoxicity in human neuroblastoma SH-SY5Y and mouse primary neurons. G2385R-LRRK2 increased mitochondrial ROS, activates caspase-3/7, and increased PARP cleavage, resulting in neurotoxicity. Treatment with curcumin (an antioxidant) significantly protected against G2385R-LRRK2-induced neurodegeneration by reducing mitochondrial ROS, caspase-3/7 activation, and PARP cleavage. We also found that the cellular environmental stressor, H2O2 significantly promotes both WT-LRRK2- and G2385R-LRRK2-induced neurotoxicity by increasing mitochondrial ROS, caspase-3/7 activation, and PARP cleavage, while curcumin attenuated this combined neurotoxicity. These findings not only provide a novel understanding of G2385R roles in neurodegeneration and environment interaction but also provide a pharmacological approach for intervention for G2385R-LRRK2-linked PD.
Collapse
Affiliation(s)
- Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobo Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amber M Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bo Ning
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Neuroscience, Soochow University, Suzhou, China
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|