1
|
Li D, Zhang J, Su X, Yang Y, Lai J, Wei X, Chen H, Liu Y, Wang H, Sun L. Calpain1 inhibition enhances autophagy-lysosomal pathway and ameliorates tubulointerstitial fibrosis in Nephronophthisis. Mol Med 2025; 31:166. [PMID: 40319239 PMCID: PMC12049798 DOI: 10.1186/s10020-025-01231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Nephronophthisis (NPH) is classified under the category of renal ciliopathies and is the most common genetic disease leading to renal failure in children. Early-onset and progressive renal tubulointerstitial fibrosis represents one of the most significant features, culminating in renal insufficiency. However, the molecular mechanism of tubulointerstitial fibrosis remains unclear. Previously, we constructed an NPH mouse model via CRISPR-Cas9. This mouse model demonstrated typical features of tubulointerstitial fibrosis. In this study, we aimed to explore the pathogenesis of tubulointerstitial fibrosis in NPH and identify early intervention targets in both the NPH models and patients. METHODS In this study, transcriptome changes in mouse kidneys were analyzed through RNA sequencing to explore the molecular mechanisms of renal tubulointerstitial fibrosis in NPH. We found an increased abundance of calpain1 in both the NPH models and patients. Pathway enrichment analysis indicated autophagy-lysosomal pathway was altered in the NPH models. Western blot, immunofluorescence or immunohistochemical staining were used to verify the expression of calpain1. We also detected autophagy activities in NPH models by lysotracker staining and transmission electron microscopy (TEM). Epithelial or mesenchymal-specific markers and Masson's trichrome staining were used to detect the status of tubulointerstitial fibrosis. Furthermore, NPH models were treated with a calpain1 inhibitor to explore the role of calpain1 in autophagy-lysosomal pathway and tubulointerstitial fibrosis. RESULTS The increased abundance of calpain1 impaired the autophagy-lysosomal pathway and induced tubulointerstitial fibrosis by promoting epithelial-to-mesenchymal transition. On the other hand, calpain1 inhibition could enhance the autophagy-lysosomal pathway and ameliorate the phenotypes of tubulointerstitial fibrosis in NPH models. CONCLUSIONS Calpain1-mediated autophagy-lysosomal pathway disorder may be an important cause of tubulointerstitial fibrosis in NPH. Calpain1 may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dantong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinglan Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Xinyu Su
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichen Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayong Lai
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaqing Liu
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Patel MM, Gerakopoulos V, Lettenmaier B, Petsouki E, Zimmerman KA, Sayer JA, Tsiokas L. SOX9-dependent fibrosis drives renal function in nephronophthisis. EMBO Mol Med 2025:10.1038/s44321-025-00233-3. [PMID: 40211043 DOI: 10.1038/s44321-025-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Fibrosis is a key feature of a broad spectrum of cystic kidney diseases, especially autosomal recessive kidney disorders such as nephronophthisis (NPHP). However, its contribution to kidney function decline and the underlying molecular mechanism(s) remains unclear. Here, we show that kidney-specific deletion of Fbxw7, the recognition receptor of the SCFFBW7 E3 ubiquitin ligase, results in a juvenile-adult NPHP-like pathology characterized by slow-progressing corticomedullary cysts, tubular degeneration, severe fibrosis, and gradual loss of kidney function. Expression levels of SOX9, a known substrate of FBW7, and WNT4, a potent pro-fibrotic factor and downstream effector of SOX9, were elevated upon loss of FBW7. Heterozygous deletion of Sox9 in compound mutant mice led to the normalization of WNT4 levels, reduced fibrosis, and preservation of kidney function without significant effects on cystic dilatation and tubular degeneration. These data suggest that FBW7-SOX9-WNT4-induced fibrosis drives kidney function decline in NPHP and, possibly, other forms of autosomal recessive kidney disorders.
Collapse
Affiliation(s)
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bryan Lettenmaier
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Cao ML, Han RY, Chen SD, Zhao DY, Shi MY, Zou JH, Li L, Jiang HK. Gene Editing: An Effective Tool for the Future Treatment of Kidney Disease. J Inflamm Res 2025; 18:4001-4018. [PMID: 40125088 PMCID: PMC11927957 DOI: 10.2147/jir.s506760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Gene editing technology involves modifying target genes to alter genetic traits and generate new phenotypes. Beginning with zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), the field has evolved through the advent of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems, and more recently to base editors (BE) and prime editors (PE). These innovations have provided deep insights into the molecular mechanisms of complex biological processes and have paved the way for novel therapeutic strategies for a range of diseases. Gene editing is now being applied in the treatment of both genetic and acquired kidney diseases, as well as in kidney transplantation and the correction of genetic mutations. This review explores the current applications of mainstream gene editing technologies in biology, with a particular emphasis on their roles in kidney disease research and treatment of. It also addresses the limitations and challenges associated with these technologies, while offering perspectives on their future potential in this field.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Rui-Yi Han
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Si-Da Chen
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Dan-Yang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Ming-Yue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Jia-Hui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Hong-Kun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| |
Collapse
|
4
|
Arai Y, Ito H, Shimizu T, Shimoda Y, Song D, Matsuo-Takasaki M, Hayata T, Hayashi Y. Patient-derived and gene-edited pluripotent stem cells lacking NPHP1 recapitulate juvenile nephronophthisis in abnormalities of primary cilia and renal cyst formation. Front Cell Dev Biol 2024; 12:1370723. [PMID: 38989059 PMCID: PMC11233770 DOI: 10.3389/fcell.2024.1370723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies.
Collapse
Affiliation(s)
- Yutaka Arai
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuzuno Shimoda
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Patel MM, Gerakopoulos V, Petsouki E, Zimmerman KA, Tsiokas L. Nephronophthisis-associated FBW7 mediates cyst-dependent decline of renal function in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582788. [PMID: 38464230 PMCID: PMC10925305 DOI: 10.1101/2024.02.29.582788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nephronophthisis (NPHP) and autosomal dominant Polycystic Kidney Disease (ADPKD) are two genetically distinct forms of Polycystic Kidney Disease (PKD), yet both diseases present with kidney cysts and a gradual decline in renal function. Prevailing dogma in PKD is that changes in kidney architecture account for the decline in kidney function, but the molecular/cellular basis of such coupling is unknown. To address this question, we induced a form of proteome reprogramming by deleting Fbxw7 encoding FBW7, the recognition receptor of the SCF FBW7 E3 ubiquitin ligase in different segments of the kidney tubular system. Deletion of Fbxw7 in the medulla led to a juvenile-adult NPHP-like phenotype, where the decline in renal function was due to SOX9-mediated interstitial fibrosis rather than cystogenesis. In contrast, the decline of renal function in ADPKD is coupled to cystic expansion via the abnormal accumulation of FBW7 in the proximal tubules and other cell types in the renal cortex. We propose that FBW7 functions at the apex of a protein network that determines renal function in ADPKD by sensing architectural changes induced by cystic expansion.
Collapse
|
6
|
Garfa Traoré M, Roccio F, Miceli C, Ferri G, Parisot M, Cagnard N, Lhomme M, Dupont N, Benmerah A, Saunier S, Delous M. Fluid shear stress triggers cholesterol biosynthesis and uptake in inner medullary collecting duct cells, independently of nephrocystin-1 and nephrocystin-4. Front Mol Biosci 2023; 10:1254691. [PMID: 37916190 PMCID: PMC10616263 DOI: 10.3389/fmolb.2023.1254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.
Collapse
Affiliation(s)
- Meriem Garfa Traoré
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Caterina Miceli
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Marie Lhomme
- ICAN Omics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Tong L, Rao J, Yang C, Xu J, Lu Y, Zhang Y, Cang X, Xie S, Mao J, Jiang P. Mutational burden of XPNPEP3 leads to defects in mitochondrial complex I and cilia in NPHPL1. iScience 2023; 26:107446. [PMID: 37599822 PMCID: PMC10432713 DOI: 10.1016/j.isci.2023.107446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Nephronophthisis-like nephropathy-1 (NPHPL1) is a rare ciliopathy, caused by mutations of XPNPEP3. Despite a well-described monogenic etiology, the pathogenesis of XPNPEP3 associated with mitochondrial and ciliary function remains elusive. Here, we identified novel compound heterozygous mutations in NPHPL1 patients with renal lesion only or with extra bone cysts together. Patient-derived lymphoblasts carrying c.634G>A and c.761G>T together exhibit elevated mitochondrial XPNPEP3 levels via the reduction of mRNA degradation, leading to mitochondrial dysfunction in both urine tubular epithelial cells and lymphoblasts from patient. Mitochondrial XPNPEP3 was co-immunoprecipitated with respiratory chain complex I and was required for the stability and activity of complex I. Deletion of Xpnpep3 in mice resulted in lower activity of complex I, elongated primary cilium, and predisposition to tubular dilation and fibrosis under stress. Our findings provide valuable insights into the mitochondrial functions involved in the pathogenesis of NPHP.
Collapse
Affiliation(s)
- Lingxiao Tong
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia Rao
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Chenxi Yang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Lu
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchen Zhang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Cang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang Key Laboratory for Neonatal Diseases, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pingping Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Wang Q, Zou B, Wei X, Lin H, Pang C, Wang L, Zhong J, Chen H, Gao X, Li M, Ong ACM, Yue Z, Sun L. Identification of renal cyst cells of type I Nephronophthisis by single-nucleus RNA sequencing. Front Cell Dev Biol 2023; 11:1192935. [PMID: 37583898 PMCID: PMC10423821 DOI: 10.3389/fcell.2023.1192935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Nephronophthisis (NPH) is the most common genetic cause of end-stage renal disease (ESRD) in childhood, and NPHP1 is the major pathogenic gene. Cyst formation at the corticomedullary junction is a pathological feature of NPH, but the mechanism underlying cystogenesis is not well understood. The isolation and identification of cystic cell subpopulation could help to identify their origins and provide vital clues to the mechanisms underlying cystogenesis in NPH. Methods: Single-nucleus RNA sequencing (snRNA-seq) was performed to produce an atlas of NPHP1 renal cells. Kidney samples were collected from WT (Nphp1 +/+) mice and NPHP1 (Nphp1 del2-20/del2-20) model mice. Results: A comprehensive atlas of the renal cellular landscape in NPHP1 was generated, consisting of 14 basic renal cell types as well as a subpopulation of DCT cells that was overrepresented in NPHP1 kidneys compared to WT kidneys. GO analysis revealed significant downregulation of genes associated with tubular development and kidney morphogenesis in this subpopulation. Furthermore, the reconstruction of differentiation trajectories of individual cells within this subpopulation confirmed that a specific group of cells in NPHP1 mice become arrested at an early stage of differentiation and proliferate to form cysts. We demonstrate that Niban1 is a specific molecular marker of cystic cells in both mice and human NPHP1. Conclusion: In summary, we report a novel subpopulation of DCT cells, marked by Niban1, that are classified as cystic cells in the NPHP1 mice kidney. These results offer fresh insights into the cellular and molecular basis of cystogenesis in NPH.
Collapse
Affiliation(s)
- Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baojuan Zou
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglin Zhong
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Reducing GEF-H1 Expression Inhibits Renal Cyst Formation, Inflammation, and Fibrosis via RhoA Signaling in Nephronophthisis. Int J Mol Sci 2023; 24:ijms24043504. [PMID: 36834937 PMCID: PMC9967383 DOI: 10.3390/ijms24043504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Nephronophthisis (NPHP) is the most prevalent monogenic disease leading to end-stage renal failure in childhood. RhoA activation is involved in NPHP pathogenesis. This study explored the role of the RhoA activator guanine nucleotide exchange factor (GEF)-H1 in NPHP pathogenesis. We analyzed the expression and distribution of GEF-H1 in NPHP1 knockout (NPHP1KO) mice using Western blotting and immunofluorescence, followed by GEF-H1 knockdown. Immunofluorescence and renal histology were used to examine the cysts, inflammation, and fibrosis. A RhoA GTPase activation assay and Western blotting were used to detect the expression of downstream GTP-RhoA and p-MLC2, respectively. In NPHP1 knockdown (NPHP1KD) human kidney proximal tubular cells (HK2 cells), we detected the expressions of E-cadherin and α-smooth muscle actin (α-SMA). In vivo, increased expression and redistribution of GEF-H1, and higher levels of GTP-RhoA and p-MLC2 in renal tissue of NPHP1KO mice were observed, together with renal cysts, fibrosis, and inflammation. These changes were alleviated by GEF-H1 knockdown. In vitro, the expression of GEF-H1 and activation of RhoA were also increased, with increased expression of α-SMA and decreased E-cadherin. GEF-H1 knockdown reversed these changes in NPHP1KD HK2 cells. Thus, the GEF-H1/RhoA/MLC2 axis is activated in NPHP1 defects and may play a pivotal role in NPHP pathogenesis.
Collapse
|
10
|
Nagao S, Yamaguchi T. Review of the Use of Animal Models of Human Polycystic Kidney Disease for the Evaluation of Experimental Therapeutic Modalities. J Clin Med 2023; 12:jcm12020668. [PMID: 36675597 PMCID: PMC9867516 DOI: 10.3390/jcm12020668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease, autosomal recessive polycystic kidney disease, and nephronophthisis are hereditary disorders with the occurrence of numerous cysts in both kidneys, often causing chronic and end-stage renal failure. Animal models have played an important role in recent advances in research not only on disease onset and progressive mechanisms but also on the development of therapeutic interventions. For a long time, spontaneous animal models have been used as the primary focus for human diseases; however, after the identification of the nucleotide sequence of the responsible genes, PKD1, PKD2, PKHD1, and NPHPs, various types of genetically modified models were developed by genetic and reproductive engineering techniques and played the leading role in the research field. In this review, we present murine models of hereditary renal cystic diseases, discussing their potential benefits in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Shizuko Nagao
- Advanced Research Center for Animal Models of Human Diseases, Fujita Health University, Toyoake 470-1192, Japan
- Correspondence: ; Tel.: +81-562-93-2434
| | - Tamio Yamaguchi
- Advanced Research Center for Animal Models of Human Diseases, Fujita Health University, Toyoake 470-1192, Japan
- Department of Medical Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| |
Collapse
|
11
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
12
|
Nakano Y, Susa K, Yanagi T, Hiraoka Y, Suzuki T, Mori T, Ando F, Mandai S, Fujiki T, Rai T, Uchida S, Sohara E. Generation of NPHP1 knockout human pluripotent stem cells by a practical biallelic gene deletion strategy using CRISPR/Cas9 and ssODN. In Vitro Cell Dev Biol Anim 2022; 58:85-95. [PMID: 35165826 DOI: 10.1007/s11626-022-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
CRISPR/Cas9 genome editing underwent remarkable progress and significantly contributed to the development of life sciences. Induced pluripotent stem cells (iPSCs) have also made a relevant contribution to regenerative medicine, pharmacological research, and genetic disease analysis. However, knockout iPSC generation with CRISPR/Cas9 in general has been difficult to achieve using approaches such as frameshift mutations to reproduce genetic diseases with full-length or nearly full-length gene deletions. Moreover, splicing and illegitimate translation could make complete knockouts difficult. Full-length gene deletion methods in iPSCs might solve these problems, although no such approach has been reported yet. In this study, we present a practical two-step gene-editing strategy leading to the precise, biallelic, and complete deletion of the full-length NPHP1 gene in iPSCs, which is the first report of biallelic (compound heterozygous) full-gene deletion in iPSCs using CRISPR/Cas9 and single-stranded oligodeoxynucleotides mainly via single-strand template repair (SSTR). Our strategy requires no selection or substances to enhance SSTR and can be used for the analysis of genetic disorders that are difficult to reproduce by conventional knockout methods.
Collapse
Affiliation(s)
- Yuta Nakano
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Tomoki Yanagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|