1
|
Leigh A, Swaroop A, Kruczek K, Ullah E, Brooks BP. Cone Rod Homeobox ( CRX): literature review and new insights. Ophthalmic Genet 2025:1-9. [PMID: 40074530 DOI: 10.1080/13816810.2025.2458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 03/14/2025]
Abstract
The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox (CRX) transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations. Lastly, we discuss implications of these findings in the development of therapies for inherited retinal diseases.
Collapse
Affiliation(s)
- Arnold Leigh
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kamil Kruczek
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA
| |
Collapse
|
2
|
Liang H, Sedillo JC, Schrodi SJ, Ikeda A. Structural variants in linkage disequilibrium with GWAS-significant SNPs. Heliyon 2024; 10:e32053. [PMID: 38882374 PMCID: PMC11177133 DOI: 10.1016/j.heliyon.2024.e32053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
With the recent expansion of structural variant identification in the human genome, understanding the role of these impactful variants in disease architecture is critically important. Currently, a large proportion of genome-wide-significant genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are functionally unresolved, raising the possibility that some of these SNPs are associated with disease through linkage disequilibrium with causal structural variants. Hence, understanding the linkage disequilibrium between newly discovered structural variants and statistically significant SNPs may provide a resource for further investigation into disease-associated regions in the genome. Here we present a resource cataloging structural variant-significant SNP pairs in high linkage disequilibrium. The database is composed of (i) SNPs that have exhibited genome-wide significant association with traits, primarily disease phenotypes, (ii) newly released structural variants (SVs), and (iii) linkage disequilibrium values calculated from unphased data. All data files including those detailing SV and GWAS SNP associations and results of GWAS-SNP-SV pairs are available at the SV-SNP LD Database and can be accessed at 'https://github.com/hliang-SchrodiLab/SV_SNPs. Our analysis results represent a useful fine mapping tool for interrogating SVs in linkage disequilibrium with disease-associated SNPs. We anticipate that this resource may play an important role in subsequent studies which investigate incorporating disease causing SVs into disease risk prediction models.
Collapse
Affiliation(s)
- Hao Liang
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Joni C Sedillo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven J Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Chi K, Li B, Huang H, Sun J, Zheng Y, Zhao L. Exploring the Research Landscape of High Myopia: Trends, Contributors, and Key Areas of Focus. Med Sci Monit 2023; 29:e941670. [PMID: 38111192 PMCID: PMC10748438 DOI: 10.12659/msm.941670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Myopia results when light rays focus before reaching the retina, causing blurred vision. High myopia (HM), defined by a refractive error of ≤-6 diopters (D) or an axial length of ≥26 mm, is an extreme form of this condition. The progression from HM to pathological myopia (PM) is marked by extensive ocular axis elongation. The rise in myopia has escalated concerns for HM due to its potential progression to pathological myopia. The covert progression of HM calls for thorough analysis of its current research landscape. MATERIAL AND METHODS HM-related publications from 2003-2022 were retrieved from the Web of Science database. Using VOSviewer and Citespace software, we conducted a bibliometric and visualized analysis to create document co-citation network maps. These maps detailed authors, institutions, countries, key terms, and significant literature. RESULTS From 9,079 articles, 8,241 were reviewed. An increasing trend in publications was observed, with Kyoko Ohno-Matsui identified as a top contributor. The Journal of Cataract and Refractive Surgery was the primary publication outlet. Chinese researchers and institutions were notably active. The document citation network identified five focal areas: refractive surgery, clinical manifestations/treatment, prevention/control, genetics, and open angle glaucoma. CONCLUSIONS Research emphasis in HM has shifted from refractive surgery for visual acuity enhancement to the diagnosis, classification, prevention, and control of HM complications. Proposals for early myopia intervention to prevent HM are gaining attention. Genetics and HM's link with open angle glaucoma, though smaller in focus, significantly enhance our understanding of HM.
Collapse
Affiliation(s)
- Kaiyao Chi
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Biao Li
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Hui Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jianhao Sun
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yanlin Zheng
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Lei Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
4
|
Sbornova I, van der Sande E, Milosavljevic S, Amurrio E, Burbano SD, Das PK, Do HH, Fisher JL, Kargbo P, Patel J, Porcher L, De Zeeuw CI, Meester-Smoor MA, Winkelman BHJ, Klaver CCW, Pocivavsek A, Kelly MP. The Sleep Quality- and Myopia-Linked PDE11A-Y727C Variant Impacts Neural Physiology by Reducing Catalytic Activity and Altering Subcellular Compartmentalization of the Enzyme. Cells 2023; 12:2839. [PMID: 38132157 PMCID: PMC10742168 DOI: 10.3390/cells12242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if (1) PDE11A protein is expressed in the retina or other eye segments in mice, (2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and (3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT, but not KO mice, that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness or axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.
Collapse
Affiliation(s)
- Irina Sbornova
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Elvis Amurrio
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Steven D. Burbano
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Prosun K. Das
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Helen H. Do
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Janet L. Fisher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Porschderek Kargbo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Janvi Patel
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Latarsha Porcher
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Chris I. De Zeeuw
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Mittlere Strasse 91, 4070 Basel, Switzerland
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Michy P. Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
- Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Haarman AE, Klaver CC, Tedja MS, Roosing S, Astuti G, Gilissen C, Hoefsloot LH, van Tienhoven M, Brands T, Magielsen FJ, Eussen BH, de Klein A, Brosens E, Verhoeven VJ. Identification of Rare Variants Involved in High Myopia Unraveled by Whole Genome Sequencing. OPHTHALMOLOGY SCIENCE 2023; 3:100303. [PMID: 37250922 PMCID: PMC10213105 DOI: 10.1016/j.xops.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Purpose Myopia (nearsightedness) is a condition in which a refractive error (RE) affects vision. Although common variants explain part of the genetic predisposition (18%), most of the estimated 70% heritability is missing. Here, we investigate the contribution of rare genetic variation because this might explain more of the missing heritability in the more severe forms of myopia. In particular, high myopia can lead to blindness and has a tremendous impact on a patient and at the societal level. The exact molecular mechanisms behind this condition are not yet completely unraveled, but whole genome sequencing (WGS) studies have the potential to identify novel (rare) disease genes, explaining the high heritability. Design Cross-sectional study performed in the Netherlands. Participants We investigated 159 European patients with high myopia (RE > -10 diopters). Methods We performed WGS using a stepwise filtering approach and burden analysis. The contribution of common variants was calculated as a genetic risk score (GRS). Main Outcome Measures Rare variant burden, GRS. Results In 25% (n = 40) of these patients, there was a high (> 75th percentile) contribution of common predisposing variants; that is, these participants had higher GRSs. In 7 of the remaining 119 patients (6%), deleterious variants in genes associated with known (ocular) disorders, such as retinal dystrophy disease (prominin 1 [PROM1]) or ocular development (ATP binding cassette subfamily B member 6 [ABCB6], TGFB induced factor homeobox 1 [TGIF1]), were identified. Furthermore, without using a gene panel, we identified a high burden of rare variants in 8 novel genes associated with myopia. The genes heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) (proportion in study population vs. the Genome Aggregation Database (GnomAD) 0.14 vs. 0.03, P = 4.22E-17), RNA binding motif protein 20 (RBM20) (0.15 vs. 0.06, P = 4.98E-05), and MAP7 domain containing 1 (MAP7D1) (0.19 vs. 0.06, P = 1.16E-10) were involved in the Wnt signaling cascade, melatonin degradation, and ocular development and showed most biologically plausible associations. Conclusions We found different contributions of common and rare variants in low and high grade myopia. Using WGS, we identified some interesting candidate genes that could explain the high myopia phenotype in some patients. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Annechien E.G. Haarman
- Erasmus MC, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus MC, Department of Epidemiology, Rotterdam, The Netherlands
| | - Caroline C.W. Klaver
- Erasmus MC, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus MC, Department of Epidemiology, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Milly S. Tedja
- Erasmus MC, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus MC, Department of Epidemiology, Rotterdam, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lies H. Hoefsloot
- Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands
| | | | - Tom Brands
- Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands
| | | | | | - Annelies de Klein
- Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Erwin Brosens
- Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Virginie J.M. Verhoeven
- Erasmus MC, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Sbornova I, van der Sande E, Milosavljevic S, Amurrio E, Burbano SD, Das P, Do H, Fisher JL, Kargbo P, Patel J, Porcher L, De Zeeuw CI, Meester-Smoor MA, Winkelman BH, Klaver CC, Pocivavsek A, Kelly MP. The sleep quality- and myopia-linked PDE11A-Y727C variant impacts neural physiology by reducing catalytic activity and altering subcellular compartmentalization of the enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567422. [PMID: 38014312 PMCID: PMC10680747 DOI: 10.1101/2023.11.16.567422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if 1) PDE11A protein is expressed in the retina or other eye segments in mouse, 2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and 3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT-but not KO mice-that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness, axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.
Collapse
Affiliation(s)
- Irina Sbornova
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Elvis Amurrio
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Steven D. Burbano
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Prosun Das
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Helen Do
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Janet L. Fisher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Porschderek Kargbo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Janvi Patel
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Latarsha Porcher
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Chris I. De Zeeuw
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Beerend H.J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Mittlere Strasse 91, Basel, Switzerland
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Michy P. Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
- Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| |
Collapse
|
7
|
He X, Li SM. Gene-environment interaction in myopia. Ophthalmic Physiol Opt 2023; 43:1438-1448. [PMID: 37486033 DOI: 10.1111/opo.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Myopia is a health issue that has attracted global attention due to its high prevalence and vision-threatening complications. It is well known that the onset and progression of myopia are related to both genetic and environmental factors: more than 450 common genetic loci have been found to be associated with myopia, while near work and outdoor time are the main environmental risk factors. As for many complex traits, gene-environment interactions are implicated in myopia development. To date, several genetic loci have been found to interact with near work or educational level. Gene-environment interaction research on myopia could yield models that provide more accurate risk predictions, thus improving targeted treatments and preventive strategies. Additionally, such investigations might have the potential to reveal novel genetic information. In this review, we summarised the findings in this field and proposed some topics for future investigations.
Collapse
Affiliation(s)
- Xi He
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shi-Ming Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
8
|
Gooley K, Williams P, Mack H, Zhu V, Langsford D, Pianta T, Barit D, Mahmood K, Savige J. A comparison of the ocular features in Pierson and Alport syndrome: a case report and literature review. Ophthalmic Genet 2023; 44:417-422. [PMID: 37537573 DOI: 10.1080/13816810.2023.2240881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Pierson syndrome and X-linked Alport syndrome result from pathogenic variants in LAMB2 and COL4A5, respectively, and both affect basement membranes in the kidney and the eye. This study describes the ocular features in an individual with a homozygous LAMB2 pathogenic variant and compares the reported abnormalities in Pierson syndrome with those in Alport syndrome. METHODS A 28-year-old man who developed kidney failure 10 years previously and subsequently had an atrial septal defect repair was suspected of having genetic kidney disease on the basis of his likely diagnosis of Focal and Segmental Glomerulosclerosis (FSGS), his young age at presentation, and his cardiac anomaly. He then underwent Whole Exome Sequencing and a formal ophthalmological examination. RESULTS The patient was found to have a homozygous Likely Pathogenic missense variant (p.(Arg1719Cys)) in LAMB2 consistent with the diagnosis of Pierson syndrome. He had normal visual acuity, normal optic globe and cornea size, and normal lens appearance on direct examination. Upon further testing, his cornea demonstrated central thinning. There was also increased corneal endothelial pleomorphism, a reduced foveal reflex, and a blunted foveal curvature, similar to the features seen in X-linked Alport syndrome. CONCLUSION Our patient had a later onset form of Pierson syndrome or "FSGS type 5, with or without ocular abnormalities," consistent with his "milder" LAMB2 missense variant. The resemblance of the ocular features in Pierson syndrome and X-linked Alport syndrome suggests that mutations in LAMB2 and COL4A5 have similar effects on basement membranes and the pathogenesis of ocular damage.
Collapse
Affiliation(s)
- Kieran Gooley
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Australia
| | - Peter Williams
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Australia
| | - Heather Mack
- Department of Ophthalmology, The University of Melbourne, East Melbourne, Australia
| | - Victor Zhu
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Australia
| | | | - Tim Pianta
- Renal Unit, Northern Health, Epping, Australia
| | - David Barit
- Renal Unit, Northern Health, Epping, Australia
| | - Khalid Mahmood
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Wang Y, Xiao X, Li X, Yi Z, Jiang Y, Zhang F, Zhou L, Li S, Jia X, Sun W, Wang P, Zhang Q. Genetic and clinical landscape of ARR3-associated MYP26: the most common cause of Mendelian early-onset high myopia with a unique inheritance. Br J Ophthalmol 2023; 107:1545-1553. [PMID: 36180177 PMCID: PMC10579186 DOI: 10.1136/bjo-2022-321511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
AIMS To elucidate genetic background of early-onset high myopia (eoHM) and characteristics of ARR3-associated MYP26. METHODS Variants in 14 genes reported to contribute to eoHM, including ARR3, were selected from exome sequencing data set and classified into different categories following American College of Medical Genetics and Genomics guidelines based on in silico prediction, associated phenotypes, confirmation and cosegregation analysis. The available clinical data of individuals were summarised. RESULTS Pathogenic and likely pathogenic variants in three of 14 genes were identified in 52 of 928 families with eoHM, including 29 in ARR3, 22 in OPN1LW and 1 in LRPAP1. For ARR3, 24 pathogenic variants (16 truncation and 8 missense) were identified in 66 women and 12 men, in whom 64 women and 4 men had eoHM by X-linked female-limited inheritance. Refraction ranged from -5.00 to -28.75 diopter (-12.58±4.83). Mild-to-moderately reduced cone responses were recorded in 76.9% (10/13) of patients with electroretinogram recordings. Most patients (75.9%, 41/54) had mild myopic fundus changes (C0 to C1). Genotype-phenotype analysis suggested that the myopic retinopathy degree was correlated with age and the variant's nature. Peripheral retinal degeneration was observed in 38.5% (5/13) patients using wide-field examinations. CONCLUSION This study reveals ARR3 as the most frequently implicated gene for Mendelian eoHM. Truncations and highly scored missense variants in ARR3 are pathogenic. Myopia due to ARR3 mutations is transmitted in X-linked female-limited inheritance, manifests with mild cone impairment and slowly progresses to pathologic myopia. Identification of the most common cause for Mendelian eoHM provides a valuable starting point into the molecular mechanism of myopia.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Fengsheng Zhang
- Department of Ophthalmology, Chaoju Inner Mongolia Eye Hospital Co Ltd, Hohhot, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2023; 43:1905-1930. [PMID: 36427109 PMCID: PMC11412200 DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Myopia is a refractive disorder arising from a mismatch between refractive power and relatively long axial length of the eye. With its dramatically increasing prevalence, myopia has become a pervasive social problem. It is commonly accepted that abnormal visual input acts as an initiating factor of myopia. As the first station to perceive visual signals, the retina plays an important role in myopia etiology. The retina is a fine-layered structure with multitudinous cells, processing intricate visual signals via numerous molecular pathways. Accordingly, dopaminergic mechanisms, contributions of rod and cone photoreceptors, myopic structural changes of retinal pigment epithelium (RPE) and neuro-retinal layers have all suggested a vital role of retinal dysfunction in myopia development. Herein, we separately discuss myopia-related retinal dysfunction and current dilemmas by different levels, from molecules to cells, with the hope that the comprehensive delineation could contribute to a better understanding of myopia etiology, indicate novel therapeutic targets, and inspire future studies.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
11
|
Jiang C, Melles RB, Yin J, Fan Q, Guo X, Cheng CY, He M, Mackey DA, Guggenheim JA, Klaver C, Nair KS, Jorgenson E, Choquet H. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Front Genet 2023; 14:1113058. [PMID: 37351342 PMCID: PMC10282939 DOI: 10.3389/fgene.2023.1113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Long axial length (AL) is a risk factor for myopia. Although family studies indicate that AL has an important genetic component with heritability estimates up to 0.94, there have been few reports of AL-associated loci. Methods: Here, we conducted a multiethnic genome-wide association study (GWAS) of AL in 19,420 adults of European, Latino, Asian, and African ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, with replication in a subset of the Consortium for Refractive Error and Myopia (CREAM) cohorts of European or Asian ancestry. We further examined the effect of the identified loci on the mean spherical equivalent (MSE) within the GERA cohort. We also performed genome-wide genetic correlation analyses to quantify the genetic overlap between AL and MSE or myopia risk in the GERA European ancestry sample. Results: Our multiethnic GWA analysis of AL identified a total of 16 genomic loci, of which 5 are novel. We found that all AL-associated loci were significantly associated with MSE after Bonferroni correction. We also found that AL was genetically correlated with MSE (rg = -0.83; SE, 0.04; p = 1.95 × 10-89) and myopia (rg = 0.80; SE, 0.05; p = 2.84 × 10-55). Finally, we estimated the array heritability for AL in the GERA European ancestry sample using LD score regression, and found an overall heritability estimate of 0.37 (s.e. = 0.04). Discussion: In this large and multiethnic study, we identified novel loci, associated with AL at a genome-wide significance level, increasing substantially our understanding of the etiology of AL variation. Our results also demonstrate an association between AL-associated loci and MSE and a shared genetic basis between AL and myopia risk.
Collapse
Affiliation(s)
- Chen Jiang
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Ronald B. Melles
- KPNC, Department of Ophthalmology, Redwood City, CA, United States
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
- Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China
| | - Ching-Yu Cheng
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Centre for Eye Research Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, WA, Australia
| | - David A. Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Caroline Klaver
- Department Ophthalmology, Department Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - K. Saidas Nair
- Department of Ophthalmology and Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, United States
| |
Collapse
|
12
|
Clark R, Pozarickij A, Hysi PG, Ohno-Matsui K, Williams C, Guggenheim JA. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. PLoS Genet 2022; 18:e1010478. [PMID: 36395078 PMCID: PMC9671369 DOI: 10.1371/journal.pgen.1010478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A 'Stage-I' sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a 'Stage-II' sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits.
Collapse
Affiliation(s)
- Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Pirro G. Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|