1
|
Khalifa O, Ayoub S, Arredouani A. Exploring the Putative Involvement of MALAT1 in Mediating the Beneficial Effect of Exendin-4 on Oleic Acid-Induced Lipid Accumulation in HepG2 Cells. Biomedicines 2025; 13:370. [PMID: 40002783 PMCID: PMC11853215 DOI: 10.3390/biomedicines13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The reduction of oleic acid (OA)-induced steatosis in HepG2 cells observed upon treatment with the glucagon-like peptide-1 receptor agonist (GLP-1RA) Exendin-4 (Ex-4) is associated with the modulation of the expression of several microRNAs, long non-coding RNAs (lncRNAs), and mRNAs. Notably, MALAT1, an lncRNA, shows significant downregulation in the presence of Ex-4 as compared to OA alone. In this study, we aimed to explore the role of MALAT1 in the positive impact of Ex-4 on OA-induced lipid accumulation in HepG2 cells. Methods: Steatosis in HepG2 cells was induced by treating them with 400 µM OA. The effect of Ex-4 on steatosis was examined by treating the steatotic cells with 200 nM of EX-4 for 3 h. MALAT1 was silenced with siRNA, while gene expression was quantified using qRT-PCR. Results: In the presence of Ex-4, the silencing of MALAT1 did not exert any discernible influence on de novo lipogenesis genes such as PPARγ and SREBP1. However, MALAT1 silencing significantly affected, to varying degrees, the expression levels of several lipid metabolism genes such as FAS, ACADL, CPT1A, and MTTP. Conclusions: Further investigations are warranted to fully decipher the role of the Ex-4-MALAT1 in the positive impact of GLP-1RAs on steatosis.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation Doha, Doha P.O. Box 34110, Qatar;
| | - Sama Ayoub
- Weill Cornell Medicine Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation Doha, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Belizário J, Garay-Malpartida M. Key Epigenetic Players in Etiology and Novel Combinatorial Therapies for Treatment of Hepatocellular Carcinoma. LIVERS 2024; 4:638-655. [DOI: 10.3390/livers4040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death in which the molecular tumorigenesis and cellular heterogeneity are poorly understood. The genetic principle that specific driver mutations in oncogenes, DNA repair genes, and tumor-suppressor genes can independently drive cancer development has been widely explored. Additionally, a repertory of harmful epigenetic modifications in DNA and chromatin—impacting the expression of genes involved in cellular proliferation, differentiation, genome stability, cell-cycle control, and DNA repair—are now acknowledged across various biological contexts that contribute to cancer etiology. Notably, the dynamic hypermethylation and hypomethylation in enhancer and promoter regions that promote activation or silencing of the master regulatory genes of the epigenetic programs is often altered in tumor cells due to mutation. Genome instability is one of the cancer hallmarks that contribute to transdifferentiation and intratumoral heterogeneity. Thus, it is broadly accepted that tumor tissue is dominated by genetically and epigenetically distinct sub-clones which display a set of genetic and epigenetic mutations. Here we summarize some functions of key genetic and epigenetic players and biochemical pathways leading to liver cell transformation. We discuss the role of the potential epigenetic marks in target genes thought to be involved in sequential events following liver lipid metabolism dysregulation, inflammation, fibrosis, cirrhosis, and finally hepatocellular carcinoma. We also briefly describe new findings showing how epigenetic drugs together with chemotherapy and immunotherapy can improve overall responses in patients with hepatic tumors.
Collapse
Affiliation(s)
- José Belizário
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| | - Miguel Garay-Malpartida
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| |
Collapse
|
3
|
Brandt A, Kopp F. Long Noncoding RNAs in Diet-Induced Metabolic Diseases. Int J Mol Sci 2024; 25:5678. [PMID: 38891865 PMCID: PMC11171519 DOI: 10.3390/ijms25115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.
Collapse
Affiliation(s)
- Annette Brandt
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Florian Kopp
- Clinical Pharmacy Group, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Ma J, Gao R, Xie Q, Pan X, Tong N. Whole transcriptome sequencing analyses of islets reveal ncRNA regulatory networks underlying impaired insulin secretion and increased β-cell mass in high fat diet-induced diabetes mellitus. PLoS One 2024; 19:e0300965. [PMID: 38557554 PMCID: PMC10984535 DOI: 10.1371/journal.pone.0300965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
AIM Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with β-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS Despite compensatory hyperinsulinemia and a significant increase in β-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased β-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased β-cell mass in obesity-related diabetes.
Collapse
Affiliation(s)
- Jinfang Ma
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Dawood RM, Salum GM, Abd El-Meguid M, Fotouh BES. Molecular Insights of Nonalcoholic Fatty Liver Disease Pathogenesis. J Interferon Cytokine Res 2024; 44:111-123. [PMID: 38301145 DOI: 10.1089/jir.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent chronic liver disease. Many hepatic abnormalities are associated with NAFLD such as nonalcoholic steatohepatitis, progressive fibrosis, cirrhosis, and liver failure. Moreover, the pathogenesis of NAFLD has numerous etiologies and can be explained due to the existence of several of stimulus that act simultaneously on genetically susceptible patients. These stimuli include obesity, diabetes, and insulin resistance. In addition, identifying the role of gut microbiota on NAFLD progression has been illustrated. In this review, we clarified the several factors that lead to the development of NAFLD and identify those who are most at risk of developing liver end-stage disease. Highlighting the noninvasive diagnostic NAFLD markers could be helpful in the disease prevention and treatment approaches.
Collapse
Affiliation(s)
- Reham Mohammed Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Ghada Maher Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Basma El-Sayed Fotouh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
6
|
Wen Y, Ma L, Ju C. Recent insights into the pathogenesis and therapeutic targets of chronic liver diseases. EGASTROENTEROLOGY 2023; 1:e100020. [PMID: 38074919 PMCID: PMC10704956 DOI: 10.1136/egastro-2023-100020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 01/03/2025]
Abstract
Viral hepatitis, alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the three major causes of chronic liver diseases, which account for approximately 2 million deaths per year worldwide. The current direct-acting antiviral drugs and vaccinations have effectively reduced and ameliorated viral hepatitis infection, but there are still no effective drug treatments for ALD, NAFLD and liver cancer due to the poor understanding of their pathogenesis. To better understand the pathogenesis, the fifth Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Annual Symposium, which was held virtually on 21-22 October 2022, focused on the topics related to ALD, NAFLD and liver cancer. Here, we briefly highlight the presentations that focus on the current progress in basic and translational research in ALD, NAFLD and liver cancer. The roles of non-coding RNA, autophagy, extrahepatic signalling, macrophages, etc in liver diseases are deliberated, and the application of single-cell RNA sequencing in the study of liver disease is also discussed.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
8
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhao Y, Yu Y, Ommati MM, Xu J, Wang J, Zhang J, Sun Z, Niu R, Wang J. Multiomics Analysis Revealed the Molecular Mechanism of miRNAs in Fluoride-Induced Hepatic Glucose and Lipid Metabolism Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14284-14295. [PMID: 36222057 DOI: 10.1021/acs.jafc.2c03049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluoride-induced liver injury seriously endangers human and animal health and animal food safety, but the underlying mechanism remains unclear. This study aims to explore the mechanism of miRNAs in fluoride-induced hepatic glycolipid metabolism disorders. C57 male mice were used to establish the fluorosis model (22.62 mg/L F-, 12 weeks). The results indicated that fluoride increased fluoride levels, impaired the structure and function, and disrupted the glycolipid metabolism in the liver. Furthermore, the sequencing results showed that fluoride exposure resulted in the differential expression of 35 miRNAs and 480 mRNAs, of which 23 miRNAs were related to glycolipid metabolism. miRNA-mRNA network analyses and RT-PCR revealed that miRNAs mediated fluoride-induced disturbances in the hepatic glycolipid metabolism. Its possible mechanism was to regulate the insulin pathway, PPAR pathway, and FOXO pathway, which in turn affected the bile secretion, the metabolic processes of glucose, the decomposition of lipids, and the synthesis of unsaturated fatty acids in the liver. This study provides a theoretical basis for miRNAs as diagnostic indicators and target drugs for the treatment of fluoride-induced liver injury.
Collapse
Affiliation(s)
- Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jipeng Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
10
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|