1
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Patterson WB, Young ND, Holzhausen EA, Lurmann F, Liang D, Walker DI, Jones DP, Liao J, Chen Z, Conti DV, Chatzi L, Goodrich JA, Alderete TL. Oxidative gaseous air pollutant exposure interacts with PNPLA3-I148M genotype to influence liver fat fraction and multi-omics profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125692. [PMID: 39864653 PMCID: PMC11859754 DOI: 10.1016/j.envpol.2025.125692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (Oxwt) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort. Prior-month residential Oxwt exposure (redox-weighted oxidative capacity of nitrogen dioxide and ozone) was spatially interpolated from monitoring stations via inverse-distance-squared weighting. Liver fat fraction was assessed by MRI. Serum miRNAs and metabolites were assayed via NanoString nCounter and LC-HRMS, respectively. Multi-omics factor analysis (MOFA) was used to identify latent factors with shared variance across omics layers. Multivariable linear regression models adjusted for age, sex, body mass index, and genotype with liver fat or MOFA factors as an outcome and examined PNPLA3 (rs738409; CC/CG vs. GG) as a multiplicative interaction term. Overall, a standard deviation difference in Oxwt exposure was associated with 8.9% relative increase in liver fat (p = 0.04) and this relationship differed by PNPLA3 genotype (p-value for interaction term: pintx<0.001), whereby relative increases in liver fat for GG and CC/CG participants were 71.8% and 2.4%, respectively. There was no main effect of Oxwt on MOFA Factor 1 expression (p = 0.85), but there was an interaction with PNPLA3 genotype (pintx = 0.01), whereby marginal slopes were 0.211 and -0.017 for GG and CC/CG participants, respectively. MOFA Factor 1 in turn was associated with liver fat (p = 0.006). MOFA Factor 1 miRNAs targeted genes in Fatty Acid Biosynthesis and Metabolism and Lysine Degradation pathways. MOFA Factor 9 was also associated with liver fat and was comprised of branched-chain keto acid and amino acid metabolites. The effects of Oxwt exposure on liver fat is exacerbated in young adults with two PNPLA3 risk alleles, potentially through differential effects on miRNA and/or metabolite profiles.
Collapse
Affiliation(s)
- William B Patterson
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan D Young
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kaur N, Singh J. Generation and Characterization of Human iPSC-Derived Astrocytes with Potential for Modeling X-Linked Adrenoleukodystrophy Phenotypes. Int J Mol Sci 2025; 26:1576. [PMID: 40004040 PMCID: PMC11855073 DOI: 10.3390/ijms26041576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating most cases. Mouse models of X-ALD do not capture the phenotype differences and an appropriate model to investigate the mechanism of disease onset and progress remains a critical need. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN, and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, NANOG, SSEA, and TRA-1-60. Expression of markers SOX17, Brachyury, Desmin, OXT2, and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN, and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated saturated very long chain fatty acids (VLCFAs), a hallmark of X-ALD, and demonstrated differential mitochondrial bioenergetics, cytokine gene expression, and differences in STAT3 and AMPK signaling between AMN and cALD astrocytes. These patient astrocytes provide disease-relevant tools to investigate the mechanism of differential neuroinflammatory response in X-ALD and will be valuable cell models for testing new therapeutics.
Collapse
Affiliation(s)
- Navtej Kaur
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
4
|
Parasar P, Kaur N, Singh J. Pathophysiology of X-Linked Adrenoleukodystrophy: Updates on Molecular Mechanisms. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2024; 7:277-288. [PMID: 39056013 PMCID: PMC11271253 DOI: 10.26502/jbb.2642-91280151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
X-ALD, an inherited monogenic metabolic disorder affecting the CNS and adrenal white matter, is caused by mutations in ABCD1 gene leading to defective fatty acid oxidation in the peroxisomes. This results in accumulation of very long-chain fatty acids, VLCFA, into brain, spinal cord, and body fluids. A single ABCD1mutation does not clearly explain the severity and diverse clinical spectrum of X-ALD phenotypes which suggests that not only genetic but also other modifier genes, epigenetic factors, and environmental factors play a role and contribute to neuroinflammation, mitochondrial dysfunctions, oxidative stress, and metabolic defects seen in phenotypes of ALD. In this review we discuss genotype and phenotype correlation and clinical spectra of X-ALD, previous and recent modifier genetic factors of X-ALD, including novel role of microRNAs (miRNAs) in pathology and as biomarkers. We also discuss the mechanistic interplay of miRNAs and metabolic pathways and potential of targeting miRNAs for X-ALD.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Navtej Kaur
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
5
|
Kaur N, Singh J. Generating human AMN and cALD iPSC-derived astrocytes with potential for modeling X-linked adrenoleukodystrophy phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596696. [PMID: 38854155 PMCID: PMC11160757 DOI: 10.1101/2024.05.31.596696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating the majority of cases. Mouse model of X-ALD does not capture the phenotype differences and an appropriate model to investigate mechanism of disease onset and progress remains a critical need. Induced pluripotent stem cell (iPSC)-derived and cell models derived from them have provided useful tools for investigating cell-type specific disease mechanisms. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, Nanog, SSEA and TRA-1-60. Expression of markers SOX17, brachyury, Desmin, Oxt2 and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated VLCFA, a hallmark of X-ALD. These patient astrocytes provide disease-relevant tools to investigate mechanism of differential neuroinflammatory response and metabolic reprogramming in X-ALD. Further these patient-derived human astrocyte cell models will be valuable for testing new therapeutics.
Collapse
|