1
|
Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp AT, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AM, Sestan N. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 2022; 377:eabo7257. [PMID: 36007006 PMCID: PMC9614553 DOI: 10.1126/science.abo7257] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chuan Xu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ryan D. Risgaard
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xoel Mato-Blanco
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Željka Krsnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Xabier de Martin
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xavier Martí-Pérez
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - Danielle K. Schmidt
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Gomez-Sanchez
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kevin T. Gobeske
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashwin Debnath
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cade J. Hottman
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Anthony G. Boghdadi
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - John J. Ely
- MAEBIOS, Alamogordo, NM 88310, USA
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marcel Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, Radiology, Long School of Medicine, UT Health San Antonio
- NeoNeuron LLC, Palo Alto, CA 94306, USA
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - James Bourne
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), MELIS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Matthew J. Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- National Center for PTSD, US Department of Veterans Affairs, White River Junction, VT, USA
| | - Stephen M. Strittmatter
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale School of Medicine, New Haven, CT 06536, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M.M. Sousa
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Departments of Genetics and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Yuan Z, Druzhinina IS, Gibbons JG, Zhong Z, Van de Peer Y, Rodriguez RJ, Liu Z, Wang X, Wei H, Wu Q, Wang J, Shi G, Cai F, Peng L, Martin FM. Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. THE ISME JOURNAL 2021; 15:3468-3479. [PMID: 34108667 PMCID: PMC8629976 DOI: 10.1038/s41396-021-01023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Understanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila-S. salsa symbiosis.
Collapse
Affiliation(s)
- Zhilin Yuan
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S. Druzhinina
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - John G. Gibbons
- grid.266683.f0000 0001 2166 5835Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Zhenhui Zhong
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China ,grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA USA
| | - Yves Van de Peer
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,grid.511033.5VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.49697.350000 0001 2107 2298Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Russell J. Rodriguez
- grid.34477.330000000122986657Adaptive Symbiotic Technologies, University of Washington, Seattle, WA USA
| | - Zhongjian Liu
- grid.256111.00000 0004 1760 2876Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Wang
- grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huanshen Wei
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Qi Wu
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jieyu Wang
- grid.9227.e0000000119573309Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohui Shi
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Peng
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M. Martin
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China ,grid.29172.3f0000 0001 2194 6418Université de Lorraine, INRAE, UMR Interactions Arbres/Micro-Organismes, Centre INRAE Grand Est Nancy, Champenoux, France
| |
Collapse
|
3
|
Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN, Curi RA. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping. BMC Genomics 2021; 22:737. [PMID: 34645387 PMCID: PMC8515666 DOI: 10.1186/s12864-021-08053-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The detection of signatures of selection in genomic regions provides insights into the evolutionary process, enabling discoveries regarding complex phenotypic traits. In this research, we focused on identifying genomic regions affected by different selection pressures, mainly highlighting the recent positive selection, as well as understanding the candidate genes and functional pathways associated with the signatures of selection in the Mangalarga Marchador genome. Besides, we seek to direct the discussion about genes and traits of importance in this breed, especially traits related to the type and quality of gait, temperament, conformation, and locomotor system. RESULTS Three different methods were used to search for signals of selection: Tajima's D (TD), the integrated haplotype score (iHS), and runs of homozygosity (ROH). The samples were composed of males (n = 62) and females (n = 130) that were initially chosen considering well-defined phenotypes for gait: picada (n = 86) and batida (n = 106). All horses were genotyped using a 670 k Axiom® Equine Genotyping Array (Axiom MNEC670). In total, 27, 104 (chosen), and 38 candidate genes were observed within the signatures of selection identified in TD, iHS, and ROH analyses, respectively. The genes are acting in essential biological processes. The enrichment analysis highlighted the following functions: anterior/posterior pattern for the set of genes (GLI3, HOXC9, HOXC6, HOXC5, HOXC4, HOXC13, HOXC11, and HOXC10); limb morphogenesis, skeletal system, proximal/distal pattern formation, JUN kinase activity (CCL19 and MAP3K6); and muscle stretch response (MAPK14). Other candidate genes were associated with energy metabolism, bronchodilator response, NADH regeneration, reproduction, keratinization, and the immunological system. CONCLUSIONS Our findings revealed evidence of signatures of selection in the MM breed that encompass genes acting on athletic performance, limb development, and energy to muscle activity, with the particular involvement of the HOX family genes. The genome of MM is marked by recent positive selection. However, Tajima's D and iHS results point also to the presence of balancing selection in specific regions of the genome.
Collapse
Affiliation(s)
- Wellington B Santos
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil.
| | - Gustavo P Schettini
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Amanda M Maiorano
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Fernando O Bussiman
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Júlio C C Balieiro
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Guilherme C Ferraz
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Guilherme L Pereira
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Welder Angelo Baldassini
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Otávio R M Neto
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Henrique N Oliveira
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Rogério A Curi
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| |
Collapse
|
4
|
Jallow MW, Cerami C, Clark TG, Prentice AM, Campino S. Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS One 2020; 15:e0235141. [PMID: 32609760 PMCID: PMC7329092 DOI: 10.1371/journal.pone.0235141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency anaemia is a major health problem affecting approximately 1.2 billion people worldwide. Young children, women of reproductive age and pregnant women living in sub-Saharan Africa are the most vulnerable. It is estimated that iron deficiency accounts for half of anaemia cases. Apart from nutritional deficiency, infection, inflammation and genetic factors are the major drivers of anaemia. However, the role of genetic risk factors has not been thoroughly investigated. This is particularly relevant in African populations, as they carry high genetic diversity and have a high prevalence of anaemia. Multiple genetic variations in iron regulatory genes have been linked to impaired iron status. Here we conducted a literature review to identify genetic variants associated with iron imbalance among global populations. We compare their allele frequencies and risk scores and we investigated population-specific selection among populations of varying geographic origin using data from the Keneba Biobank representing individuals in rural Gambia and the 1000 Genomes Project. We identified a significant lack of data on the genetic determinants of iron status in sub-Saharan Africa. Most of the studies on genetic determinants of iron status have been conducted in Europeans. Also, we identified population differences in allele frequencies in candidate putative genetic risk factors. Given the disproportionately high genetic diversity in African populations coupled with their high prevalence of iron deficiency, there is need to investigate the genetic influences of low iron status in Sub-Saharan Africa. The resulting insights may inform the future implementation of iron intervention strategies.
Collapse
Affiliation(s)
- Momodou W. Jallow
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| |
Collapse
|
5
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
6
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
7
|
Atkinson EG, Audesse AJ, Palacios JA, Bobo DM, Webb AE, Ramachandran S, Henn BM. No Evidence for Recent Selection at FOXP2 among Diverse Human Populations. Cell 2018; 174:1424-1435.e15. [PMID: 30078708 DOI: 10.1016/j.cell.2018.06.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
FOXP2, initially identified for its role in human speech, contains two nonsynonymous substitutions derived in the human lineage. Evidence for a recent selective sweep in Homo sapiens, however, is at odds with the presence of these substitutions in archaic hominins. Here, we comprehensively reanalyze FOXP2 in hundreds of globally distributed genomes to test for recent selection. We do not find evidence of recent positive or balancing selection at FOXP2. Instead, the original signal appears to have been due to sample composition. Our tests do identify an intronic region that is enriched for highly conserved sites that are polymorphic among humans, compatible with a loss of function in humans. This region is lowly expressed in relevant tissue types that were tested via RNA-seq in human prefrontal cortex and RT-PCR in immortalized human brain cells. Our results represent a substantial revision to the adaptive history of FOXP2, a gene regarded as vital to human evolution.
Collapse
Affiliation(s)
| | - Amanda Jane Audesse
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julia Adela Palacios
- Department of Ecology and Evolutionary Biology and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA; Department of Statistics and Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Dean Michael Bobo
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Ashley Elizabeth Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Brenna Mariah Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA; Department of Anthropology and the Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Alterations in the expression of a neurodevelopmental gene exert long-lasting effects on cognitive-emotional phenotypes and functional brain networks: translational evidence from the stress-resilient Ahi1 knockout mouse. Mol Psychiatry 2017; 22:884-899. [PMID: 27021817 PMCID: PMC5444025 DOI: 10.1038/mp.2016.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
Many psychiatric disorders are highly heritable and may represent the clinical outcome of early aberrations in the formation of neural networks. The placement of brain connectivity as an 'intermediate phenotype' renders it an attractive target for exploring its interaction with genomics and behavior. Given the complexity of genetic make up and phenotypic heterogeneity in humans, translational studies are indicated. Recently, we demonstrated that a mouse model with heterozygous knockout of the key neurodevelopmental gene Ahi1 displays a consistent stress-resilient phenotype. Extending these data, the current research describes our multi-faceted effort to link early variations in Ahi1 expression with long-term consequences for functional brain networks and cognitive-emotional phenotypes. By combining behavioral paradigms with graph-based analysis of whole-brain functional networks, and then cross-validating the data with robust neuroinformatic data sets, our research suggests that physiological variation in gene expression during neurodevelopment is eventually translated into a continuum of global network metrics that serve as intermediate phenotypes. Within this framework, we suggest that organization of functional brain networks may result, in part, from an adaptive trade-off between efficiency and resilience, ultimately culminating in a phenotypic diversity that encompasses dimensions such as emotional regulation and cognitive function.
Collapse
|
9
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Gazave E, Ma L, Chang D, Coventry A, Gao F, Muzny D, Boerwinkle E, Gibbs RA, Sing CF, Clark AG, Keinan A. Neutral genomic regions refine models of recent rapid human population growth. Proc Natl Acad Sci U S A 2014; 111:757-62. [PMID: 24379384 PMCID: PMC3896169 DOI: 10.1073/pnas.1310398110] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human populations have experienced dramatic growth since the Neolithic revolution. Recent studies that sequenced a very large number of individuals observed an extreme excess of rare variants and provided clear evidence of recent rapid growth in effective population size, although estimates have varied greatly among studies. All these studies were based on protein-coding genes, in which variants are also impacted by natural selection. In this study, we introduce targeted sequencing data for studying recent human history with minimal confounding by natural selection. We sequenced loci far from genes that meet a wide array of additional criteria such that mutations in these loci are putatively neutral. As population structure also skews allele frequencies, we sequenced 500 individuals of relatively homogeneous ancestry by first analyzing the population structure of 9,716 European Americans. We used very high coverage sequencing to reliably call rare variants and fit an extensive array of models of recent European demographic history to the site frequency spectrum. The best-fit model estimates ∼ 3.4% growth per generation during the last ∼ 140 generations, resulting in a population size increase of two orders of magnitude. This model fits the data very well, largely due to our observation that assumptions of more ancient demography can impact estimates of recent growth. This observation and results also shed light on the discrepancy in demographic estimates among recent studies.
Collapse
Affiliation(s)
- Elodie Gazave
- Departments of Biological Statistics and Computational Biology and
| | - Li Ma
- Departments of Biological Statistics and Computational Biology and
| | - Diana Chang
- Departments of Biological Statistics and Computational Biology and
| | - Alex Coventry
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Feng Gao
- Departments of Biological Statistics and Computational Biology and
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030; and
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030; and
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030; and
| | - Charles F. Sing
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105
| | - Andrew G. Clark
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Alon Keinan
- Departments of Biological Statistics and Computational Biology and
| |
Collapse
|
11
|
Worldwide genetic variation at the 3′ untranslated region of the HLA-G gene: balancing selection influencing genetic diversity. Genes Immun 2013; 15:95-106. [DOI: 10.1038/gene.2013.67] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/08/2022]
|
12
|
Abstract
This study addresses the question of how purifying selection operates during recent rapid population growth such as has been experienced by human populations. This is not a straightforward problem because the human population is not at equilibrium: population genetics predicts that, on the one hand, the efficacy of natural selection increases as population size increases, eliminating ever more weakly deleterious variants; on the other hand, a larger number of deleterious mutations will be introduced into the population and will be more likely to increase in their number of copies as the population grows. To understand how patterns of human genetic variation have been shaped by the interaction of natural selection and population growth, we examined the trajectories of mutations with varying selection coefficients, using computer simulations. We observed that while population growth dramatically increases the number of deleterious segregating sites in the population, it only mildly increases the number carried by each individual. Our simulations also show an increased efficacy of natural selection, reflected in a higher fraction of deleterious mutations eliminated at each generation and a more efficient elimination of the most deleterious ones. As a consequence, while each individual carries a larger number of deleterious alleles than expected in the absence of growth, the average selection coefficient of each segregating allele is less deleterious. Combined, our results suggest that the genetic risk of complex diseases in growing populations might be distributed across a larger number of more weakly deleterious rare variants.
Collapse
|
13
|
Sams A, Hawks J. Patterns of population differentiation and natural selection on the celiac disease background risk network. PLoS One 2013; 8:e70564. [PMID: 23936230 PMCID: PMC3729812 DOI: 10.1371/journal.pone.0070564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 06/24/2013] [Indexed: 12/20/2022] Open
Abstract
Celiac disease is a common small intestinal inflammatory condition induced by wheat gluten and related proteins from rye and barley. Left untreated, the clinical presentation of CD can include failure to thrive, malnutrition, and distension in juveniles. The disease can additionally lead to vitamin deficiencies, anemia, and osteoporosis. Therefore, CD potentially negatively affected fitness in past populations utilizing wheat, barley, and rye. Previous analyses of CD risk variants have uncovered evidence for positive selection on some of these loci. These studies also suggest the possibility that risk for common autoimmune conditions such as CD may be the result of positive selection on immune related loci in the genome to fight infection. Under this evolutionary scenario, disease phenotypes may be a trade-off from positive selection on immunity. If this hypothesis is generally true, we can expect to find a signal of natural selection when we survey across the network of loci known to influence CD risk. This study examines the non-HLA autosomal network of gene loci associated with CD risk in Europe. We reject the null hypothesis of neutrality on this network of CD risk loci. Additionally, we can localize evidence of selection in time and space by adding information from the genome of the Tyrolean Iceman. While we can show significant differentiation between continental regions across the CD network, the pattern of evidence is not consistent with primarily recent (Holocene) selection across this network in Europe. Further localization of ancient selection on this network may illuminate the ecological pressures acting on the immune system during this critically interesting phase of our evolution.
Collapse
Affiliation(s)
- Aaron Sams
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
14
|
Nelson CS, Fuller CK, Fordyce PM, Greninger AL, Li H, DeRisi JL. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Res 2013; 41:5991-6004. [PMID: 23625967 PMCID: PMC3695516 DOI: 10.1093/nar/gkt259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein’s DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2’s-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.
Collapse
Affiliation(s)
- Christopher S Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94131, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Maricic T, Günther V, Georgiev O, Gehre S, Curlin M, Schreiweis C, Naumann R, Burbano HA, Meyer M, Lalueza-Fox C, de la Rasilla M, Rosas A, Gajovic S, Kelso J, Enard W, Schaffner W, Pääbo S. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 2012. [PMID: 23197593 DOI: 10.1093/molbev/mss271] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates. We find that the derived allele of this site is less efficient than the ancestral allele in activating transcription from a reporter construct. The derived allele also binds less POU3F2 dimers than POU3F2 monomers compared with the ancestral allele. Because the substitution in the POU3F2 binding site is likely to alter the regulation of FOXP2 expression, and because it is localized in a region of the gene associated with a previously described signal of positive selection, it is a plausible candidate for having caused a recent selective sweep in the FOXP2 gene.
Collapse
Affiliation(s)
- Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jeong SJ, Luo R, Li S, Strokes N, Piao X. Characterization of G protein-coupled receptor 56 protein expression in the mouse developing neocortex. J Comp Neurol 2012; 520:2930-40. [PMID: 22351047 DOI: 10.1002/cne.23076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GPR56, one of the adhesion G-protein-coupled receptors (GPCRs), plays an important role in the development of the cerebral cortex. Mutations in GPR56 cause a severe human cortical malformation called bilateral frontoparietal polymicrogyria (BFPP), characterized by a global malformation of the cerebral cortex that most severely affects the frontal and parietal regions. To characterize the expression pattern of GPR56 in the developing cerebral cortex, we developed a mouse monoclonal antibody against mouse GPR56. We revealed that GPR56 is expressed in multiple cell types in the preplate, marginal zone, subventricular zone (SVZ), and ventricular zone (VZ). Most interestingly, the expression of GPR56 in preplate neurons showed an anterior-to-posterior gradient at embryonic day (E) 10.5-11.5. In contrast, the expression pattern of the GPR56 ligand, collagen III, revealed no visible gradient pattern. With the widespread expression of GPR56 in the developing cortex, it is difficult to draw a specific conclusion as to which of the GPR56-expressing cells are critical for human brain development. However, the correlation between GPR56 expression in neurons at E10.5-E11.5 and the anatomic distribution of the cortical malformation in both humans and mice suggests that its function in preplate neurons is indispensible.
Collapse
Affiliation(s)
- Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Lenstra JA, Groeneveld LF, Eding H, Kantanen J, Williams JL, Taberlet P, Nicolazzi EL, Sölkner J, Simianer H, Ciani E, Garcia JF, Bruford MW, Ajmone-Marsan P, Weigend S. Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim Genet 2012; 43:483-502. [DOI: 10.1111/j.1365-2052.2011.02309.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 12/30/2022]
Affiliation(s)
- J. A. Lenstra
- Faculty of Veterinary Medicine; Utrecht University; Utrecht; The Netherlands
| | - L. F. Groeneveld
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Hoeltystr. 10; 31535; Neustadt; Germany
| | - H. Eding
- Animal Evaluations Unit; CRV; Arnhem; The Netherlands
| | - J. Kantanen
- Biotechnology and Food Research; MTT Agrifood Research Finland; FI-31600; Jokioinen; Finland
| | - J. L. Williams
- Parco Tecnologico Padano; via Einstein; 2600; Lodi; Italy
| | - P. Taberlet
- Laboratoire d'Ecologie Alpine; Université Joseph Fourier; BP 53; Grenoble; France
| | - E. L. Nicolazzi
- Istituto di Zootecnica and BioDNA Research Centre; Università Cattolica del Sacro Cuore; Piacenza; Italy
| | - J. Sölkner
- Department of Sustainable Agricultural Systems; Animal Breeding Group; BOKU - University of Natural Resources and Life Sciences; Vienna; Austria
| | - H. Simianer
- Department of Animal Sciences; Animal Breeding and Genetics Group; Georg-August-University Göttingen; 37075; Göttingen; Germany
| | - E. Ciani
- Department of General and Environmental Physiology; University of Bari “Aldo Moro”; Bari; Italy
| | - J. F. Garcia
- Universidade Estadual Paulista; Araçatuba; Brazil
| | - M. W. Bruford
- Organisms and Environment Division; School of Biosciences; Cardiff University; Cardiff; UK
| | - P. Ajmone-Marsan
- Istituto di Zootecnica and BioDNA Research Centre; Università Cattolica del Sacro Cuore; Piacenza; Italy
| | - S. Weigend
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Hoeltystr. 10; 31535; Neustadt; Germany
| |
Collapse
|
18
|
Scharff C, Petri J. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos Trans R Soc Lond B Biol Sci 2011; 366:2124-40. [PMID: 21690130 PMCID: PMC3130369 DOI: 10.1098/rstb.2011.0001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.
Collapse
Affiliation(s)
- Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | | |
Collapse
|
19
|
Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 2011; 21:415-24. [PMID: 21592779 DOI: 10.1016/j.conb.2011.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
PURPOSE OF THE REVIEW A reduced dosage of the transcription factor FOXP2 leads to speech and language impairments probably owing to deficits in cortical and subcortical neural circuits. Based on evolutionary sequence analysis it has been proposed that the two amino acid substitutions that occurred on the human lineage have been positively selected. Here I review recent studies investigating the functional consequences of these two substitutions and discuss how these first endeavors to study human brain evolution can be interpreted in the context of speech and language evolution. RECENT FINDINGS Mice carrying the two substitutions in their endogenous Foxp2 gene show specific alterations in dopamine levels, striatal synaptic plasticity and neuronal morphology. Mice carrying only one functional Foxp2, show additional and partly opposite effects suggesting that FOXP2 has contributed to tuning cortico-basal ganglia circuits during human evolution. Evidence from human and songbird studies suggest that this could have been relevant during language acquisition or vocal learning, respectively. SUMMARY FOXP2 could have contributed to the evolution of human speech and language by adapting cortico-basal ganglia circuits. More generally the recent studies allow careful optimism that aspects of human brain evolution can be investigated in model systems such as the mouse.
Collapse
Affiliation(s)
- Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.
| |
Collapse
|
20
|
Walsh CA, Engle EC. Allelic diversity in human developmental neurogenetics: insights into biology and disease. Neuron 2010; 68:245-53. [PMID: 20955932 PMCID: PMC3010396 DOI: 10.1016/j.neuron.2010.09.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 11/20/2022]
Abstract
One of the biggest challenges in neuroscience is illuminating the architecture of developmental brain disorders, which include structural malformations of the brain and nerves, intellectual disability, epilepsy, and some psychiatric conditions like autism and potentially schizophrenia. Ongoing gene identification reveals a great diversity of genetic causes underlying abnormal brain development, illuminating new biochemical pathways often not suspected based on genetic studies in other organisms. Our greater understanding of genetic disease also shows the complexity of allelic diversity, in which distinct mutations in a given gene can cause a wide range of distinct diseases or other phenotypes. These diverse alleles not only provide a platform for discovery of critical protein-protein interactions in a genetic fashion, but also illuminate the likely genetic architecture of as yet poorly characterized neurological disorders.
Collapse
Affiliation(s)
- Christopher A Walsh
- Division of Genetics, Department of Neurology, Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
21
|
Rivero O, Reif A, Sanjuán J, Moltó MD, Kittel-Schneider S, Nájera C, Töpner T, Lesch KP. Impact of the AHI1 gene on the vulnerability to schizophrenia: a case-control association study. PLoS One 2010; 5:e12254. [PMID: 20805890 PMCID: PMC2923617 DOI: 10.1371/journal.pone.0012254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/15/2010] [Indexed: 01/13/2023] Open
Abstract
Background The Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany. Methodology/Principal Findings 29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006<p<0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037). Conclusions/Significance Our data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations.
Collapse
Affiliation(s)
- Olga Rivero
- Unit of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Oleksyk TK, Nelson GW, An P, Kopp JB, Winkler CA. Worldwide distribution of the MYH9 kidney disease susceptibility alleles and haplotypes: evidence of historical selection in Africa. PLoS One 2010; 5:e11474. [PMID: 20634883 PMCID: PMC2901326 DOI: 10.1371/journal.pone.0011474] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/14/2010] [Indexed: 01/27/2023] Open
Abstract
MYH9 was recently identified as renal susceptibility gene (OR 3-8, p < 10(-8)) for major forms of kidney disease disproportionately affecting individuals of African descent. The risk haplotype (E-1) occurs at much higher frequencies in African Americans (> or = 60%) than in European Americans (< 4%), revealing a genetic basis for a major health disparity. The population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on the MYH9 region are not well explored. We reconstructed MYH9 haplotypes from 4 tagging single nucleotide polymorphisms (SNPs) spanning introns 12-23 using available data from HapMap Phase II, and by genotyping 938 DNAs from the Human Genome Diversity Panel (HGDP). The E-1 risk haplotype followed a cline, being most frequent within sub-Saharan African populations (range 50-80%), less frequent in populations from the Middle East (9-27%) and Europe (0-9%), and rare or absent in Asia, the Americas, and Oceania. The fixation indexes (F(ST)) for pairwise comparisons between the risk haplotypes for continental populations were calculated for MYH9 haplotypes; F(ST) ranged from 0.27-0.40 for Africa compared to other continental populations, possibly due to selection. Uniquely in Africa, the Yoruba population showed high frequency extended haplotype length around the core risk allele (C) compared to the alternative allele (T) at the same locus (rs4821481, iHs = 2.67), as well as high population differentiation (F(ST(CEU vs. YRI)) = 0.51) in HapMap Phase II data, also observable only in the Yoruba population from HGDP (F(ST) = 0.49), pointing to an instance of recent selection in the genomic region. The population-specific divergence in MYH9 risk allele frequencies among the world's populations may prove important in risk assessment and public health policies to mitigate the burden of kidney disease in vulnerable populations.
Collapse
Affiliation(s)
- Taras K. Oleksyk
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - George W. Nelson
- Laboratory of Genomic Diversity, SAIC-Frederick, Frederick, Maryland, United States of America
| | - Ping An
- Laboratory of Genomic Diversity, SAIC-Frederick, Frederick, Maryland, United States of America
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cheryl A. Winkler
- Laboratory of Genomic Diversity, SAIC-Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
23
|
Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophr Res 2010; 120:159-66. [PMID: 20452750 DOI: 10.1016/j.schres.2010.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Association with schizophrenia of the Abelson Helper Integration Site 1 (AHI1) gene on chromosome 6q23 and the adjacent primate-specific gene, C6orf217, was demonstrated in an inbred, Arab Israeli family sample and replicated in an Icelandic case control sample. Further support was provided by a second replication in a large European sample and a meta-analysis that supported association with schizophrenia of all seven alleles overtransmitted to affected subjects in the original study. We examined constitutive expression of AHI1 and C6orf217 in immortalized lymphoblasts of patients from the Arab Israeli family sample in which the association with schizophrenia was originally discovered and population-matched normal controls, and in post-mortem brain of patients with schizophrenia and bipolar (BP) disorder and control subjects from the Stanley Medical Research Institute Collection. We found a significant effect of diagnostic group in the lymphoblast sample (F=5.72; df=2,39; p=0.006). Patients with early age of onset had higher AHI1 expression than controls and later onset patients (p=0.002; 0.03 respectively). C6orf217 expression in lymphoblasts was too low to measure. We found no difference in brain expression of AHI1 in schizophrenia or BP patients compared to controls. However, there was a genotypic difference in AHI1 expression for SNP rs9321501, which was strongly associated with schizophrenia in the original study. Genotypes that included the undertransmitted C allele (CC/AC) showed lower expression than the homozygous AA genotype (F=4.73, df=2,83; p=0.028). There was no significant difference in brain expression of C6orf217 between patients and controls and no genotypic effect. This study provides further evidence for involvement of AHI1 in susceptibility to schizophrenia.
Collapse
|
24
|
Torri F, Akelai A, Lupoli S, Sironi M, Amann-Zalcenstein D, Fumagalli M, Dal Fiume C, Ben-Asher E, Kanyas K, Cagliani R, Cozzi P, Trombetti G, Strik Lievers L, Salvi E, Orro A, Beckmann JS, Lancet D, Kohn Y, Milanesi L, Ebstein RB, Lerer B, Macciardi F. Fine mapping of AHI1 as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB J 2010; 24:3066-82. [PMID: 20371615 DOI: 10.1096/fj.09-152611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In previous studies, we identified a locus for schizophrenia on 6q23.3 and proposed the Abelson helper integration site 1 (AHI1) as the candidate gene. AHI1 is expressed in the brain and plays a key role in neurodevelopment, is involved in Joubert syndrome, and has been recently associated with autism. The neurodevelopmental role of AHI1 fits with etiological hypotheses of schizophrenia. To definitively confirm our hypothesis, we searched for associations using a dense map of the region. Our strongest findings lay within the AHI1 gene: single-nucleotide polymorphisms rs11154801 and rs7759971 showed significant associations (P=6.23E-06; P=0.84E-06) and haplotypes gave P values in the 10E-8 to 10E-10 range. The second highest significant region maps close to AHI1 and includes the intergenic region between BC040979 and PDE7B (rs2038549 at P=9.70E-06 and rs1475069 at P=6.97E-06), and PDE7B and MAP7. Using a sample of Palestinian Arab families to confirm these findings, we found isolated signals. While these results did not retain their significance after correction for multiple testing, the joint analysis across the 2 samples supports the role of AHI1, despite the presence of heterogeneity. Given the hypothesis of positive selection of schizophrenia genes, we resequenced a 11 kb region within AHI1 in ethnically defined populations and found evidence for a selective sweep. Network analysis indicates 2 haplotype clades, with schizophrenia-susceptibility haplotypes clustering within the major clade. In conclusion, our data support the role of AHI1 as a susceptibility gene for schizophrenia and confirm it has been subjected to positive selection, also shedding light on new possible candidate genes, MAP7 and PDE7B.
Collapse
Affiliation(s)
- Federica Torri
- Genomics and Bioinformatics Unit, University of Milan-Fondazione Filarete, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|