1
|
Applying the CRISPR/Cas9 for treating human and animal diseases: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Recently, genome editing tools have been extensively used in many biomedical sciences. The gene editing system is applied to modify the DNA sequences in the cellular system to comprehend their physiological response. A developing genome editing technology like clustered regularly short palindromic repeats (CRISPR) is widely expended in medical sciences. CRISPR and CRISPR-associated protein 9 (CRISPR/Cas9) system is being exploited to edit any DNA mutations related to inherited ailments to investigate in animals (in vivo) and cell lines (in vitro). Remarkably, CRISPR/Cas9 could be employed to examine treatments of many human genetic diseases such as Cystic fibrosis, Tyrosinemia, Phenylketonuria, Muscular dystrophy, Parkinson’s disease, Retinoschisis, Hemophilia, β-Thalassemia and Atherosclerosis. Moreover, CRISPR/Cas9 was used for disease resistance such as Tuberculosis, Johne’s diseases, chronic enteritis, and Brucellosis in animals. Finally, this review discusses existing progress in treating hereditary diseases using CRISPR/Cas9 technology and the high points accompanying obstacles.
Collapse
|
2
|
Alton EWFW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harman TE, Hyde S, McLachlan G. Gene Therapy for Respiratory Diseases: Progress and a Changing Context. Hum Gene Ther 2020; 31:911-916. [PMID: 32746737 DOI: 10.1089/hum.2020.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Eric W F W Alton
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - A Christopher Boyd
- UK CF Gene Therapy Consortium, London, United Kingdom.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C Davies
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Deborah R Gill
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Tracy E Harman
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Stephen Hyde
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gerry McLachlan
- UK CF Gene Therapy Consortium, London, United Kingdom.,The Roslin Institute & R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
|
4
|
Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, Sinn PL, McCray PB. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 2018; 1:88730. [PMID: 27656681 DOI: 10.1172/jci.insight.88730] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.
Collapse
Affiliation(s)
- Ashley L Cooney
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology
| | - Mahmoud H Abou Alaiwa
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Viral S Shah
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Molecular Physiology and Biophysics
| | - Drake C Bouzek
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Mallory R Stroik
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Linda S Powers
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Nick D Gansemer
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - David K Meyerholz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pathology
| | - Michael J Welsh
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Howard Hughes Medical Institute.,Molecular Physiology and Biophysics
| | - David A Stoltz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Patrick L Sinn
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B McCray
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Jaiprasart P, Yeung BZ, Lu Z, Wientjes MG, Cui M, Hsieh CM, Woo S, Au JLS. Quantitative contributions of processes by which polyanion drugs reduce intracellular bioavailability and transfection efficiency of cationic siRNA lipoplex. J Control Release 2018; 270:101-113. [PMID: 29203416 DOI: 10.1016/j.jconrel.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022]
Abstract
RNA Interference (RNAi) is a potentially useful tool to correct the detrimental effects of faulty genes; several RNAi are undergoing clinical evaluation in various diseases. The present study identified the relative contributions of three mechanisms by which polyanion drugs reduced the gene silencing activity of Lipoplex, a complex of small interfering RNA (siRNA) and cationic liposomes. The study used a siRNA against the chemoresistance gene survivin and two model polyanion drugs (suramin, heparin). Products of Lipoplex destabilization were separated, identified, and/or quantified using ultrafiltration, gel electrophoresis, and RT-qPCR (quantitative reverse transcription polymerase chain reaction). Cell binding and endocytosis of fluorescence-labeled Lipoplex and the amount of siRNA at its site of action RISC (RNA-induced silencing complex) were evaluated using endocytosis markers, confocal microscopy, quantitative image analysis, immunoprecipitation, and RT-qPCR. The results show suramin and heparin exerted multiple concentration-dependent effects. First, these agents altered several Lipoplex properties (i.e., reduced particle size, changed surface charge, modified composition of protein biocorona). Second, both caused Lipoplex destabilization to release double- and single-strand siRNA and/or smaller siRNA-lipid complexes with reduced siRNA cargo. Third, both prevented the cell surface binding and internalization of Lipoplex, diminished the siRNA concentration in RISC, and retarded the mRNA knockdown. Suramin and heparin yielded qualitatively and quantitatively different results. Analysis of the experimental results of suramin using quantitative pharmacology (QP) modeling indicated the major cause of gene silencing activity loss depended on drug concentration, changing from inhibition of endocytosis at lower concentration (accounting for 60% loss at ~9μM) to inhibition of cell surface binding and loss of siRNA cargo at higher concentrations (accounting for 64% and 27%, respectively, at 70μM). In summary, the present study demonstrates the complex and dynamic interactions between polyanions and Lipoplex, and the use of QP modeling to delineate the contributions of three mechanisms to the eventual loss of gene silencing activity.
Collapse
Affiliation(s)
- Pharavee Jaiprasart
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States
| | - Ze Lu
- Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - M Guillaume Wientjes
- Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - Minjian Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - Chien-Ming Hsieh
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States
| | - Jessie L-S Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States; College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Hornick AL, Li N, Oakland M, McCray PB, Sinn PL. Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors. Hum Gene Ther 2016; 27:354-62. [PMID: 27004832 DOI: 10.1089/hum.2015.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lentiviral vectors are increasingly used in clinical trials to treat genetic diseases. Our research has focused on strategies to improve lentiviral gene transfer efficiency in the airways. Previously we demonstrated that a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the baculovirus envelope glycoprotein GP64 (GP64-FIV) efficiently transduced mouse nasal epithelia in vivo but transduced mouse intrapulmonary airways with 10-fold less efficiency. Here, we demonstrate that members of a family of proteins with antiviral activity, interferon-induced transmembrane proteins (IFITMs), are more highly expressed in mouse intrapulmonary airways as compared with mouse nasal airways. Using GP64- and VSV-G (vesicular stomatitis virus G glycoprotein)-pseudotyped FIV, we show that expression of mouse IFITM1, IFITM2, and IFITM3 restricts gene transfer. Further, we show that both the nasal and intrapulmonary airways of IFITM locus knockout mice are more efficiently transduced with GP64-FIV than their heterozygous littermates. In anticipation of transitioning our studies into pig models of airway disease and clinical trials in humans, we investigated the ability of pig and human IFITMs to restrict lentiviral gene transfer. We observed that both human and pig IFITMs partially restricted both VSV-G-FIV and GP64-FIV transduction in vitro. Previous studies have focused on IFITM-mediated restriction of replication-competent wild-type viruses; however, these results implicate the IFITM proteins as restriction factors that can limit lentivirus-based vector gene transfer to airway epithelia. The findings are relevant to future preclinical and clinical airway gene therapy trials using lentivirus-based vectors.
Collapse
Affiliation(s)
- Andrew L Hornick
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Ni Li
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Mayumi Oakland
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Paul B McCray
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Patrick L Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
7
|
Myint M, Limberis MP, Bell P, Somanathan S, Haczku A, Wilson JM, Diamond SL. In vivo evaluation of adeno-associated virus gene transfer in airways of mice with acute or chronic respiratory infection. Hum Gene Ther 2014; 25:966-76. [PMID: 25144316 DOI: 10.1089/hum.2014.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼10(5) CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼10(5) CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer.
Collapse
Affiliation(s)
- Melissa Myint
- 1 Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania , Philadelphia, PA 19104
| | | | | | | | | | | | | |
Collapse
|
8
|
Viart V, Bergougnoux A, Bonini J, Varilh J, Chiron R, Tabary O, Molinari N, Claustres M, Taulan-Cadars M. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J 2014; 45:116-28. [PMID: 25186262 DOI: 10.1183/09031936.00113214] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CFTR gene displays a tightly regulated tissue-specific and temporal expression. Mutations in this gene cause cystic fibrosis (CF). In this study we wanted to identify trans-regulatory elements responsible for CFTR differential expression in fetal and adult lung, and to determine the importance of inhibitory motifs in the CFTR-3'UTR with the aim of developing new tools for the correction of disease-causing mutations within CFTR. We show that lung development-specific transcription factors (FOXA, C/EBP) and microRNAs (miR-101, miR-145, miR-384) regulate the switch from strong fetal to very low CFTR expression after birth. By using miRNome profiling and gene reporter assays, we found that miR-101 and miR-145 are specifically upregulated in adult lung and that miR-101 directly acts on its cognate site in the CFTR-3'UTR in combination with an overlapping AU-rich element. We then designed miRNA-binding blocker oligonucleotides (MBBOs) to prevent binding of several miRNAs to the CFTR-3'UTR and tested them in primary human nasal epithelial cells from healthy individuals and CF patients carrying the p.Phe508del CFTR mutation. These MBBOs rescued CFTR channel activity by increasing CFTR mRNA and protein levels. Our data offer new understanding of the control of the CFTR gene regulation and new putative correctors for cystic fibrosis.
Collapse
Affiliation(s)
- Victoria Viart
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Université Montpellier I, UFR de Médecine, Montpellier, France Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Anne Bergougnoux
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Jennifer Bonini
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Université Montpellier I, UFR de Médecine, Montpellier, France
| | - Jessica Varilh
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- Centre de Ressources et de Compétences de la Mucoviscidose (CRCM), CHU Montpellier, Montpellier, France
| | - Olivier Tabary
- CDR St Antoine, INSERM UMR-S 938, Paris, France UPMC Université Paris 06, Paris, France
| | - Nicolas Molinari
- Département d'Information Médicale, CHU Montpellier, Montpellier, France UMR 729 MISTEA, Université Montpellier I, Montpellier, France
| | - Mireille Claustres
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Université Montpellier I, UFR de Médecine, Montpellier, France Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Magali Taulan-Cadars
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France Université Montpellier I, UFR de Médecine, Montpellier, France
| |
Collapse
|
9
|
Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release 2014; 178:8-17. [PMID: 24440664 DOI: 10.1016/j.jconrel.2014.01.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ. Intranasal administration of the mucus penetrating DNA nanoparticles greatly enhanced particle distribution, retention and gene transfer in the mouse lung airways compared to conventional gene carriers. Successful delivery of a full-length plasmid encoding the cystic fibrosis transmembrane conductance regulator protein was achieved in the mouse lungs and airway cells, including a primary culture of mucus-covered human airway epithelium grown at air-liquid interface, without causing acute inflammation or toxicity. Highly compacted mucus penetrating DNA nanoparticles hold promise for lung gene therapy.
Collapse
|
10
|
Barrán-Berdón AL, Misra SK, Datta S, Muñoz-Úbeda M, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Cationic gemini lipids containing polyoxyethylene spacers as improved transfecting agents of plasmid DNA in cancer cells. J Mater Chem B 2014; 2:4640-4652. [DOI: 10.1039/c4tb00389f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Conroy R, Seto B. Multifunctional Nanoscale Delivery Systems for Nucleic Acids. ENGINEERING IN TRANSLATIONAL MEDICINE 2014:475-512. [DOI: 10.1007/978-1-4471-4372-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Impact of low oxygen on the secretome of human adipose-derived stromal/stem cell primary cultures. Biochimie 2013; 95:2286-96. [DOI: 10.1016/j.biochi.2013.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
|
13
|
|
14
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenetic disease that afflicts nearly 70 000 patients worldwide. The mutation results in the accumulation of viscous mucus in multiple organs especially in the lungs, liver and pancreas. High associated morbidity and mortality is caused by CF due to the lack of effective therapies. It is widely accepted that morbidity and mortality caused by CF is primarily due to the respiratory manifestations of the disease. Consequently, several approaches were recently developed for treatment of lung complications of CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the therapy. Local pulmonary delivery of therapeutics has two major advantages over systemic application. First, it enhances the accumulation of therapeutics specifically in the lungs and therefore increases the efficiency of the treatment. Second, local lung delivery substantially prevents the penetration of the delivered drug into the systemic circulation limiting adverse side effects of the treatment on other organs and tissues. This review is focused on different approaches to the treatment of respiratory manifestations of CF as well as on methods of pulmonary delivery of therapeutics.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| | | |
Collapse
|
15
|
Liang W, Kwok PCL, Chow MYT, Tang P, Mason AJ, Chan HK, Lam JKW. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. Eur J Pharm Biopharm 2013; 86:64-73. [PMID: 23702276 DOI: 10.1016/j.ejpb.2013.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease, but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar lavage fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impactor (NGI), gel retardation and in vitro transfection via a twin stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Philip C L Kwok
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Faculty of Pharmacy, The University of Sydney, Australia
| | - Michael Y T Chow
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Patricia Tang
- Faculty of Pharmacy, The University of Sydney, Australia
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London, United Kingdom
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Australia
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Oakland M, Maury W, McCray PB, Sinn PL. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e69. [PMID: 23360952 PMCID: PMC3564419 DOI: 10.1038/mtna.2012.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV)-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN) responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV) in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.
Collapse
Affiliation(s)
- Mayumi Oakland
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
17
|
Sinn PL, Cooney AL, Oakland M, Dylla DE, Wallen TJ, Pezzulo AA, Chang EH, McCray PB. Lentiviral vector gene transfer to porcine airways. MOLECULAR THERAPY-NUCLEIC ACIDS 2012. [PMID: 23187455 PMCID: PMC3511674 DOI: 10.1038/mtna.2012.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF).
Collapse
Affiliation(s)
- Patrick L Sinn
- Department of Pediatrics, Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. APPLICATION OF CLINICAL GENETICS 2012; 5:29-36. [PMID: 23776378 PMCID: PMC3681190 DOI: 10.2147/tacg.s8873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy.
Collapse
Affiliation(s)
- Tabinda J Burney
- Department of Gene Therapy, Imperial College London ; UK CF Gene Therapy Consortium London
| | | |
Collapse
|
19
|
Burnight ER, Wang G, McCray PB, Sinn PL. Transcriptional targeting in the airway using novel gene regulatory elements. Am J Respir Cell Mol Biol 2012; 47:227-33. [PMID: 22447971 DOI: 10.1165/rcmb.2011-0444oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The delivery of cystic fibrosis transmembrane conductance regulator (CFTR) to airway epithelia is a goal of many gene therapy strategies to treat cystic fibrosis. Because the native regulatory elements of the CFTR are not well characterized, the development of vectors with heterologous promoters of varying strengths and specificity would aid in our selection of optimal reagents for the appropriate expression of the vector-delivered CFTR gene. Here we contrasted the performance of several novel gene-regulatory elements. Based on airway expression analysis, we selected putative regulatory elements from BPIFA1 and WDR65 to investigate. In addition, we selected a human CFTR promoter region (∼ 2 kb upstream of the human CFTR transcription start site) to study. Using feline immunodeficiency virus vectors containing the candidate elements driving firefly luciferase, we transduced murine nasal epithelia in vivo. Luciferase expression persisted for 30 weeks, which was the duration of the experiment. Furthermore, when the nasal epithelium was ablated using the detergent polidocanol, the mice showed a transient loss of luciferase expression that returned 2 weeks after administration, suggesting that our vectors transduced a progenitor cell population. Importantly, the hWDR65 element drove sufficient CFTR expression to correct the anion transport defect in CFTR-null epithelia. These results will guide the development of optimal vectors for sufficient, sustained CFTR expression in airway epithelia.
Collapse
Affiliation(s)
- Erin R Burnight
- Interdisciplinary Graduate Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|