1
|
Pormehr LA, Manian KV, Cho HE, Comander J. Higher throughput assays for understanding the pathogenicity of variants of unknown significance (VUS) in the RPE65 gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635952. [PMID: 39975398 PMCID: PMC11838478 DOI: 10.1101/2025.01.31.635952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose RPE65 is a key enzyme in the visual cycle that regenerates 11-cis retinal. Mutations in RPE65 cause a retinal dystrophy that is treatable with an FDA-approved gene therapy. Variants of unknown significance (VUS) on genetic testing can prevent patients from obtaining a firm genetic diagnosis and accessing gene therapy. Since most RPE65 mutations have a low protein expression level, this study developed and validated multiple methods for assessing the expression level of RPE65 variants. This functional evidence is expected to aid in reclassifying RPE65 VUS as pathogenic, which in turn can broaden the application of gene therapy for RPE65 patients. Methods 30 different variants of RPE65 (12 pathogenic, 13 VUS, 5 benign) were cloned into lentiviral expression vectors. Protein expression levels were measured after transient transfection or in stable cell lines, using Western blots and immunostaining with flow cytometry. Then, a pooled, high throughput, fluorescence-activated cell sorting (FACS) assay with an NGS-based sequencing readout was used to assay pools of RPE65 variants. Results There was a high correlation between protein levels measured by Western blot, flow cytometry, and the pooled FACS assay. Using these assays, we confirm and extend RPE65 variant data, including that Pro111Ser has a low, pathogenic expression level. There was a high correlation between RPE65 expression and previously reported enzyme activity levels; further development of a high throughput enzymatic activity assay would complement this expression data. Conclusion This scalable approach can be used to solve patient pedigrees with VUS in RPE65, facilitating treatment and providing RPE65 structure-function information.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kannan Vrindavan Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ha Eun Cho
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Alahmari H, Liu CC, Rubin E, Lin VY, Rodriguez P, Chang KC. Vitamin C alleviates hyperglycemic stress in retinal pigment epithelial cells. Mol Biol Rep 2024; 51:637. [PMID: 38727927 DOI: 10.1007/s11033-024-09595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.
Collapse
Affiliation(s)
- Hamid Alahmari
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Elizabeth Rubin
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Venice Y Lin
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- North Allegheny Senior High School, Wexford, PA, 15090, USA
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Stingl K, Kempf M, Jung R, Kortüm F, Righetti G, Reith M, Dimopoulos S, Ott S, Kohl S, Stingl K. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res 2023; 92:101115. [PMID: 36096933 DOI: 10.1016/j.preteyeres.2022.101115] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
Retinal gene supplementation therapy such as the first approved one, voretigene neparvovec, delivers a functioning copy of the missing gene enabling the protein transcription in retinal cells and restore visual functions. After gene supplementation for the genetic defect, a complex network of functional regeneration is the consequence, whereas the extent is very individualized. Diagnostic and functional testings that have been used routinely by ophthalmologists so far to define the correct diagnosis, cannot be applied in the new context of defining small, sometimes subtle changes in visual functions. New view on retinal diagnostics is needed to understand this processes that define safety and efficacy of the treatment. Not only does vision have many aspects that must be addressed by specific evaluations and imaging techniques, but objective readouts of local retinal function for rods and cones separately have been an unmet need until recently. A reliable test-retest variability is necessary in rare diseases such as inherited retinal dystrophies, because statistics are often not applicable due to a low number of participants. Methods for a reliable individual evaluation of the therapy success are needed. In this manuscript we present an elaboration on retinal diagnostics combining psychophysics (eg. full-field stimulus threshold or dark adapted perimetry) as well as objective measures for local retinal function (eg. photopic and scotopic chromatic pupil campimetry) and retinal imaging for a meaningful workflow to apply in evaluation of the individual success in patients receiving gene therapy for photoreceptor diseases.
Collapse
Affiliation(s)
- Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Friederike Kortüm
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Milda Reith
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Spyridon Dimopoulos
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Saskia Ott
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Wu W, Takahashi Y, Shin HY, Ma X, Moiseyev G, Ma JX. The interplay of environmental luminance and genetics in the retinal dystrophy induced by the dominant RPE65 mutation. Proc Natl Acad Sci U S A 2022; 119:e2115202119. [PMID: 35271391 PMCID: PMC8931212 DOI: 10.1073/pnas.2115202119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
SignificanceIn humans, genetic mutations in the retinal pigment epithelium (RPE) 65 are associated with blinding diseases, for which there is no effective therapy alleviating progressive retinal degeneration in affected patients. Our findings uncovered that the increased free opsin caused by enhancing the ambient light intensity increased retinal activation, and when compounded with the RPE visual cycle dysfunction caused by the heterozygous D477G mutation and aggregation, led to the onset of retinal degeneration.
Collapse
Affiliation(s)
- Wenjing Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Henry Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
5
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Aoun M, Passerini I, Chiurazzi P, Karali M, De Rienzo I, Sartor G, Murro V, Filimonova N, Seri M, Banfi S. Inherited Retinal Diseases Due to RPE65 Variants: From Genetic Diagnostic Management to Therapy. Int J Mol Sci 2021; 22:7207. [PMID: 34281261 PMCID: PMC8268668 DOI: 10.3390/ijms22137207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of conditions that include retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EO[S]RD), which differ in severity and age of onset. IRDs are caused by mutations in >250 genes. Variants in the RPE65 gene account for 0.6-6% of RP and 3-16% of LCA/EORD cases. Voretigene neparvovec is a gene therapy approved for the treatment of patients with an autosomal recessive retinal dystrophy due to confirmed biallelic RPE65 variants (RPE65-IRDs). Therefore, the accurate molecular diagnosis of RPE65-IRDs is crucial to identify 'actionable' genotypes-i.e., genotypes that may benefit from the treatment-and is an integral part of patient management. To date, hundreds of RPE65 variants have been identified, some of which are classified as pathogenic or likely pathogenic, while the significance of others is yet to be established. In this review, we provide an overview of the genetic diagnostic workup needed to select patients that could be eligible for voretigene neparvovec treatment. Careful clinical characterization of patients by multidisciplinary teams of experts, combined with the availability of next-generation sequencing approaches, can accelerate patients' access to available therapeutic options.
Collapse
Affiliation(s)
- Manar Aoun
- Novartis Farma, Largo Boccioni 1, 21040 Origgio, Italy;
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, 50134 Florence, Italy;
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC Genetica Medica, 00168 Roma, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Irene De Rienzo
- Department of Ophthalmology, AOU-Careggi, 50234 Florence, Italy;
| | - Giovanna Sartor
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic Careggi Teaching Hospital, 50234 Florence, Italy;
| | | | - Marco Seri
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
7
|
Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc Natl Acad Sci U S A 2020; 117:32114-32123. [PMID: 33257550 DOI: 10.1073/pnas.2012623117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4 -/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4 +/- , and KI;Fatp4 -/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4 -/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.
Collapse
|
8
|
Miyagishima KJ, Zhang C, Malechka VV, Bharti K, Li W. Direct-Coupled Electroretinogram (DC-ERG) for Recording the Light-Evoked Electrical Responses of the Mouse Retinal Pigment Epithelium. J Vis Exp 2020. [PMID: 32744516 DOI: 10.3791/61491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a specialized monolayer of cells strategically located between the retina and the choriocapillaris that maintain the overall health and structural integrity of the photoreceptors. The RPE is polarized, exhibiting apically and basally located receptors or channels, and performs vectoral transport of water, ions, metabolites, and secretes several cytokines. In vivo noninvasive measurements of RPE function can be made using direct-coupled ERGs (DC-ERGs). The methodology behind the DC-ERG was pioneered by Marmorstein, Peachey, and colleagues using a custom-built stimulation recording system and later demonstrated using a commercially available system. The DC-ERG technique uses glass capillaries filled with Hank's buffered salt solution (HBSS) to measure the slower electrical responses of the RPE elicited from light-evoked concentration changes in the subretinal space due to photoreceptor activity. The prolonged light stimulus and length of the DC-ERG recording make it vulnerable to drift and noise resulting in a low yield of useable recordings. Here, we present a fast, reliable method for improving the stability of the recordings while reducing noise by using vacuum pressure to reduce/eliminate bubbles that result from outgassing of the HBSS and electrode holder. Additionally, power line artifacts are attenuated using a voltage regulator/power conditioner. We include the necessary light stimulation protocols for a commercially available ERG system as well as scripts for analysis of the DC-ERG components: c-wave, fast oscillation, light peak, and off response. Due to the improved ease of recordings and rapid analysis workflow, this simplified protocol is particularly useful in measuring age-related changes in RPE function, disease progression, and in the assessment of pharmacological intervention.
Collapse
Affiliation(s)
| | - Congxiao Zhang
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health
| | - Volha V Malechka
- Human Visual Function Core, National Eye Institute, National Institutes of Health
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health;
| |
Collapse
|
9
|
Li S, Xiao X, Yi Z, Sun W, Wang P, Zhang Q. RPE65 mutation frequency and phenotypic variation according to exome sequencing in a tertiary centre for genetic eye diseases in China. Acta Ophthalmol 2020; 98:e181-e190. [PMID: 31273949 PMCID: PMC7079156 DOI: 10.1111/aos.14181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/07/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Retinoid isomerohydrolase RPE65 has received a tremendous amount of attention due to successful clinical gene therapy for Leber congenital amaurosis (LCA) cases caused by RPE65 mutations. This study aimed to evaluate the frequency of RPE65 mutations and the associated phenotypes based on exome sequencing. METHODS RPE65 variants were collected from exome sequencing data obtained from 2133 probands with different forms of hereditary retinal degeneration (HRD). Clinical data were collected from probands with homozygous or compound heterozygous variants in RPE65. Associated phenotypes were characterized based on clinical data. RESULTS Biallelic RPE65 mutations were detected in 18 families, including eight with LCA, five with early-onset retinal degeneration, four with fundus albipunctatus-like (FA-like) changes and one with high hyperopia. These cases accounted for approximately 3.0% (8/269) of LCA and 0.8% (18/2133) of HRD cases. An almost identical FA-like change was identified in seven patients from four unrelated families with RPE65 mutations. Classification of mutations suggested that FA-like changes may be associated with biallelic missense mutations in RPE65. CONCLUSION Fundus albipunctatus-like (FA-like) change, a common characteristic fundus sign in RPE65 biallelic mutations, was unexpected but was confirmed by the finding that affected siblings from different families exhibited similar phenotypes. These results enrich our understanding of RPE65 mutation frequencies and their associated phenotypic variants.
Collapse
Affiliation(s)
- Shiqiang Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xueshan Xiao
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Yi
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wenmin Sun
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Panfeng Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qingjiong Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Motta FL, Martin RP, Porto FBO, Wohler ES, Resende RG, Gomes CP, Pesquero JB, Sallum JMF. Pathogenicity Reclasssification of RPE65 Missense Variants Related to Leber Congenital Amaurosis and Early-Onset Retinal Dystrophy. Genes (Basel) 2019; 11:E24. [PMID: 31878136 PMCID: PMC7016655 DOI: 10.3390/genes11010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
A challenge in molecular diagnosis and genetic counseling is the interpretation of variants of uncertain significance. Proper pathogenicity classification of new variants is important for the conclusion of molecular diagnosis and the medical management of patient treatments. The purpose of this study was to reclassify two RPE65 missense variants, c.247T>C (p.Phe83Leu) and c.560G>A (p.Gly187Glu), found in Brazilian families. To achieve this aim, we reviewed the sequencing data of a 224-gene retinopathy panel from 556 patients (513 families) with inherited retinal dystrophies. Five patients with p.Phe83Leu and seven with p.Gly187Glu were selected and their families investigated. To comprehend the pathogenicity of these variants, we evaluated them based on the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification guidelines. Initially, these RPE65 variants met only three pathogenic criteria: (i) absence or low frequency in the population, (ii) several missense pathogenic RPE65 variants, and (iii) 15 out of 16 lines of computational evidence supporting them as damaging, which together allowed the variants to be classified as uncertain significance. Two other pieces of evidence were accepted after further analysis of these Brazilian families: (i) p.Phe83Leu and p.Gly187Glu segregate with childhood retinal dystrophy within families, and (ii) their prevalence in Leber congenital amaurosis (LCA)/early-onset retinal dystrophy (EORD) patients can be considered higher than in other inherited retinal dystrophy patients. Therefore, these variants can now be classified as likely pathogenic according to ACMG/AMP classification guidelines.
Collapse
Affiliation(s)
- Fabiana L. Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo SP 04039-032, Brazil;
- Instituto de Genética Ocular, Sao Paulo SP 04552-050, Brazil
| | - Renan P. Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD 21205, USA; (R.P.M.); (E.S.W.)
| | - Fernanda B. O. Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte MG 30150-270, Brazil;
- Centro Oftalmológico de Minas Gerais, Belo Horizonte MG 30180-070, Brazil
| | - Elizabeth S. Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD 21205, USA; (R.P.M.); (E.S.W.)
| | | | - Caio P. Gomes
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo SP 04039-032, Brazil; (C.P.G.); (J.B.P.)
| | - João B. Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo SP 04039-032, Brazil; (C.P.G.); (J.B.P.)
| | - Juliana M. F. Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo SP 04039-032, Brazil;
- Instituto de Genética Ocular, Sao Paulo SP 04552-050, Brazil
| |
Collapse
|
11
|
Li Y, Furhang R, Ray A, Duncan T, Soucy J, Mahdi R, Chaitankar V, Gieser L, Poliakov E, Qian H, Liu P, Dong L, Rogozin IB, Redmond TM. Aberrant RNA splicing is the major pathogenic effect in a knock-in mouse model of the dominantly inherited c.1430A>G human RPE65 mutation. Hum Mutat 2019; 40:426-443. [PMID: 30628748 DOI: 10.1002/humu.23706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/03/2023]
Abstract
Human RPE65 mutations cause a spectrum of retinal dystrophies that result in blindness. While RPE65 mutations have been almost invariably recessively inherited, a c.1430A>G (p.(D477G)) mutation has been reported to cause autosomal dominant retinitis pigmentosa (adRP). To study the pathogenesis of this human mutation, we have replicated the mutation in a knock-in (KI) mouse model using CRISPR/Cas9-mediated genome editing. Significantly, in contrast to human patients, heterozygous KI mice do not exhibit any phenotypes in visual function tests. When raised in regular vivarium conditions, homozygous KI mice display relatively undisturbed visual functions with minimal retinal structural changes. However, KI/KI mouse retinae are more sensitive to light exposure and exhibit signs of degenerative features when subjected to light stress. We find that instead of merely producing a missense mutant protein, the A>G nucleotide substitution greatly affects appropriate splicing of Rpe65 mRNA by generating an ectopic splice site in comparable context to the canonical one, thereby disrupting RPE65 protein expression. Similar splicing defects were also confirmed for the human RPE65 c.1430G mutant in an in vitro Exontrap assay. Our data demonstrate that a splicing defect is associated with c.1430G pathogenesis, and therefore provide insights in the therapeutic strategy for human patients.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rachel Furhang
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Amanda Ray
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Todd Duncan
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Joseph Soucy
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rashid Mahdi
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
12
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Smith AJ, Carter SP, Kennedy BN. Genome editing: the breakthrough technology for inherited retinal disease? Expert Opin Biol Ther 2017; 17:1245-1254. [DOI: 10.1080/14712598.2017.1347629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andrew J. Smith
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Ireland
| | - Stephen P. Carter
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Ireland
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Ireland
| |
Collapse
|
14
|
Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J Neurosci 2017; 36:5808-19. [PMID: 27225770 DOI: 10.1523/jneurosci.3857-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.
Collapse
|
15
|
Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. J Neurosci 2017; 37:3294-3310. [PMID: 28235894 DOI: 10.1523/jneurosci.2717-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease.SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration.
Collapse
|
16
|
Liu W, Luisi J, Liu H, Motamedi M, Zhang W. OCT-Angiography for Non-Invasive Monitoring of Neuronal and Vascular Structure in Mouse Retina: Implication for Characterization of Retinal Neurovascular Coupling. EC OPHTHALMOLOGY 2017; 5:89-98. [PMID: 29333536 PMCID: PMC5766278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE Optical coherence tomography angiography (OCT-A) is a newly developed technique to visualize retinal vasculature non-invasively based on interferometry. Although OCT-A has been used clinically, its applications in small animal studies have been limited. This study is designed to develop and demonstrate the feasibility of a protocol for the use of an en-face OCT-based method to visualize and quantify retinal microvasculature in mice that can be used for in vivo assessment of retina ischemia. METHODS A customized algorithm was developed to extract angiographic profiles of the mouse retina from en-face OCT using an unmodified Bioptigen Envisu R-Class OCT imaging system. En-face OCT images were collected in living animals and then compared to images acquired following termination of blood flow to the retina. The images were processed with ImageJ using the raw file importer. The vessel enhancement algorithm was developed based on a combination of local contrast enhancement, Laplacian of Gaussian peak detection and background subtraction methods. For comparison, fluorescein angiography (FA) was performed using Heidelberg Spectralis® HRA+OCT imaging system. RESULTS By vessel enhancement algorithm, we successfully extracted retinal vasculature and quantified retinal vessel branch points, vascular area and vessel lengths with AngioTool. While the retinal neuronal structure could be simultaneously identified and quantified using B-scan and volumetric OCT run in the annular scanning model, the retinal vasculature in OCT-A was dramatically diminished after the animals were sacrificed, indicating en-face OCT-A signal is a measure of the blood flow. CONCLUSIONS These studies indicate that a novel approach to extract angiographs from en-face OCT images by utilizing local structure enhancement can be used to provide depth-resolved retinal vasculature distributions. Simultaneous non-invasive analysis of retinal vessels and neurons by OCT-A and OCT may provide a novel approach to characterize retinal ischemia accompanied by neurovascular coupling.
Collapse
Affiliation(s)
- Wei Liu
- Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jonathan Luisi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, United States
| | - Hua Liu
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, United States
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
18
|
Shin Y, Moiseyev G, Chakraborty D, Ma JX. A Dominant Mutation in Rpe65, D477G, Delays Dark Adaptation and Disturbs the Visual Cycle in the Mutant Knock-In Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:517-527. [PMID: 28041994 DOI: 10.1016/j.ajpath.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 01/09/2023]
Abstract
RPE65 is an indispensable component of the retinoid visual cycle in vertebrates, through which the visual chromophore 11-cis-retinal (11-cis-RAL) is generated to maintain normal vision. Various blinding conditions in humans, such as Leber congenital amaurosis and retinitis pigmentosa (RP), are attributed to either homozygous or compound heterozygous mutations in RPE65. Herein, we investigated D477G missense mutation, an unprecedented dominant-acting mutation of RPE65 identified in patients with autosomal dominant RP. We generated a D477G knock-in (KI) mouse and characterized its phenotypes. Although RPE65 protein levels were decreased in heterozygous KI mice, their scotopic, maximal, and photopic electroretinography responses were comparable to those of wild-type (WT) mice in stationary condition. As shown by high-performance liquid chromatography analysis, levels of 11-cis-RAL in fully dark-adapted heterozygous KI mice were similar to that in WT mice. However, kinetics of 11-cis-RAL regeneration after light exposure were significantly slower in heterozygous KI mice compared with WT and RPE65 heterozygous knockout mice. Furthermore, heterozygous KI mice exhibited lower A-wave recovery compared with WT mice after photobleaching, suggesting a delayed dark adaptation. Taken together, these observations suggest that D477G acts as a dominant-negative mutant of RPE65 that delays chromophore regeneration. The KI mice provide a useful model for further understanding of the pathogenesis of RP associated with this RPE65 mutant and for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dibyendu Chakraborty
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|