1
|
Xia YT, Zhang YQ, Chen L, Min L, Huang D, Zhang Y, Li C, Li ZH. Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis. PLoS One 2023; 18:e0291693. [PMID: 37751436 PMCID: PMC10522031 DOI: 10.1371/journal.pone.0291693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
As one of the triterpene extracts of Taraxacum, a traditional Chinese plant, taraxerol (TRX) exhibits antitumor activity. In this study, we evaluated the effects of TRX on the migration and invasion of MDA-MB-231 cells, analyzed the molecular mechanism through network pharmacology and molecular docking, and finally verified it by in vitro experiments. The results showed that TRX could inhibit the migration and invasion of MDA-MB-231 cells in a time- and concentration-dependent manner, while MAPK3 was the most promising target and could stably combine with TRX. In addition, the relative protein expression levels were detected by Western blot, and we observed that TRX could inhibit the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis. Moreover, an ERK activator (tert-butylhydroquinone, tBHQ) partially reversed the suppressive effect of TRX on MDA-MB-231 cells. In conclusion, TRX inhibited the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis.
Collapse
Affiliation(s)
- Yu-ting Xia
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yu-qin Zhang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Lu Chen
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Liangliang Min
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Da Huang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yulu Zhang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Cong Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Zhi-hua Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Dopytalska K, Czaplicka A, Szymańska E, Walecka I. The Essential Role of microRNAs in Inflammatory and Autoimmune Skin Diseases-A Review. Int J Mol Sci 2023; 24:ijms24119130. [PMID: 37298095 DOI: 10.3390/ijms24119130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The etiopathogenesis of autoimmune skin diseases is complex and still not fully understood. The role of epigenetic factors is emphasized in the development of such diseases. MicroRNAs (miRNAs), a group of non-coding RNAs (ncRNAs-non-coding RNAs), are one of the important post-transcriptional epigenetic factors. miRNAs have a significant role in the regulation of the immune response by participating in the process of the differentiation and activation of B and T lymphocytes, macrophages, and dendritic cells. Recent advances in research on epigenetic factors have provided new insights into the pathogenesis and potential diagnostic and therapeutic targets of many pathologies. Numerous studies revealed a change in the expression of some microRNAs in inflammatory skin disorders, and the regulation of miRNA expression is a promising therapeutic goal. This review presents the state of the art regarding changes in the expression and role of miRNAs in inflammatory and autoimmune skin diseases, including psoriasis, atopic dermatitis, vitiligo, lichen planus, hidradenitis suppurativa, and autoimmune blistering diseases.
Collapse
Affiliation(s)
- Klaudia Dopytalska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Anna Czaplicka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Elżbieta Szymańska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Irena Walecka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
3
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
4
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
5
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Sazonova MA, Ryzhkova AI, Sinyov VV, Sazonova MD, Khasanova ZB, Nikitina NA, Karagodin VP, Orekhov AN, Sobenin IA. Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing. Curr Pharm Des 2020; 25:693-699. [PMID: 30931844 DOI: 10.2174/1381612825666190329121532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. METHODS We described different methods of transfection, transduction and editing of the human genome, used in the literature. RESULTS We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. CONCLUSION The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.
Collapse
Affiliation(s)
- Margarita A Sazonova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Anastasia I Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | - Marina D Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Zukhra B Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | - Nadezhda A Nikitina
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | | | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Igor A Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
7
|
Sun QY, Ding LW, Johnson K, Zhou S, Tyner JW, Yang H, Doan NB, Said JW, Xiao JF, Loh XY, Ran XB, Venkatachalam N, Lao Z, Chen Y, Xu L, Fan LF, Chien W, Lin DC, Koeffler HP. SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells. Oncogene 2019; 38:6196-6210. [DOI: 10.1038/s41388-019-0865-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
|
8
|
Croisé F, Le Lez ML, Pisella PJ. [Martinique crinkled retinal pigment epitheliopathy (MCRPE): A case report]. J Fr Ophtalmol 2019; 42:e225-e228. [PMID: 30955902 DOI: 10.1016/j.jfo.2018.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Affiliation(s)
- F Croisé
- Service d'ophtalmologie, CHRU Bretonneau-de-Tours, 2, boulevard Tonnellé, 37044 Tours, France.
| | - M L Le Lez
- Service d'ophtalmologie, CHRU Bretonneau-de-Tours, 2, boulevard Tonnellé, 37044 Tours, France
| | - P J Pisella
- Service d'ophtalmologie, CHRU Bretonneau-de-Tours, 2, boulevard Tonnellé, 37044 Tours, France
| |
Collapse
|
9
|
BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc Natl Acad Sci U S A 2018; 115:E2839-E2848. [PMID: 29507198 PMCID: PMC5866594 DOI: 10.1073/pnas.1720662115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the most common forms of monogenic macular degeneration worldwide is caused by dominant or recessive bestrophinopathies associated with mutations in the BEST1 gene. Disease expression is known to start with a retina-wide electrophysiological defect leading to localized vitelliform and atrophic lesions and vision loss. To develop lasting therapies for this incurable disease, there is a need for greater understanding of the early pathophysiology before lesion formation. Here we find that the loss of retinal pigment epithelium apical microvilli and resulting microdetachment of the retina represent the earliest features of canine bestrophinopathies. We show that retinal light exposure expands, and dark adaptation contracts, the microdetachments. Subretinal adeno-associated virus-based gene therapy corrects both the vitelliform lesions and the light-modulated microdetachments. Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE–PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE–PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE–PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies.
Collapse
|
10
|
Wang M, Liang L, Li L, Han K, Li Q, Peng Y, Peng X, Zeng K. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 2017; 15:3479-3484. [PMID: 28393203 PMCID: PMC5436295 DOI: 10.3892/mmr.2017.6422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Pemphigus is an autoimmune disease that causes blisters and erosions in the skin and mucous membranes. The development of pemphigus is associated with the imbalance of T‑cell and humoral responses. MicroRNAs (miRNAs) can regulate many cell functions. However, whether miRNA expression is altered in peripheral blood mononuclear cells (PBMCs) during the pathogenesis of pemphigus has not been clarified. The aim of the present study was to examine the miRNA expression profiles of PBMCs from patients with pemphigus. The expression profiles of miRNAs in PBMCs from patients with active pemphigus (n=3) and healthy subjects (n=3) were analyzed by microarray. The relative levels of miR-424-5p expression in PBMCs from 9 patients and controls were validated by RT-qPCR. The functional and biological processes of the differentially expressed miRNAs were analyzed by bioinformatics. There were 124 differentially expressed miRNAs in PBMCs from the patients with pemphigus, compared with healthy controls, including 71 that were upregulated (P<0.05, fold change >2), and 53 that were downregulated (P<0.05, fold change <0.5). miR-424-5p was highly expressed in patients with pemphigus. Bioinformatics analysis indicated that the genes targeted by miR-424-5p were involved in intracellular signaling cascades, phosphate metabolism and regulation of kinase activity. The predicted target genes were associated with the T-cell receptor and mitogen-activated protein kinase signaling pathways as well as others. In conclusion, the results have demonstrated the miRNA expression profile, and verified that miR-424-5p was upregulated in PBMCs from patients with pemphigus. The biological function and potential pathways of miR-424-5p in pemphigus were predicted. Thus, miR-424-5p may contribute to the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yusheng Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuebiao Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
11
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
12
|
Jean-Charles A, Merle H, Audo I, Desoudin C, Bocquet B, Baudoin C, Sidibe M, Mauget-Faÿsse M, Wolff B, Fichard A, Lenaers G, Sahel JA, Gaudric A, Cohen SY, Hamel CP, Meunier I. Martinique Crinkled Retinal Pigment Epitheliopathy: Clinical Stages and Pathophysiologic Insights. Ophthalmology 2016; 123:2196-204. [PMID: 27474146 DOI: 10.1016/j.ophtha.2016.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To reappraise the autosomal dominant Martinique crinkled retinal pigment epitheliopathy (MCRPE) in light of the knowledge of its associated mutated gene mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3), an actor in the p38 mitogen-activated protein kinase pathway. DESIGN Clinical and molecular study. PARTICIPANTS A total of 45 patients from 3 generations belonging to a family originating from Martinique with an autosomal dominant MCRPE were examined. METHODS Best-corrected visual acuity, fundus photographs, and spectral-domain optical coherence tomography (SD OCT) of all clinically affected patients and carriers for the causal mutation were reviewed at the initial visit and 4 years later for 10 of them. Histologic retinal lesions of Mapkapk3(-/-) mice were compared with those of the human disease. MAIN OUTCOME MEASURES The MCRPE natural history in view of MAPKAPK3 function and Mapkapk3(-/-) mouse retinal lesions. RESULTS Eighteen patients had the c.518T>C mutation. One heterozygous woman aged 20 years was asymptomatic with normal fundus and SD OCT (stage 0). All c.518T>C heterozygous patients older than 30 years of age had the characteristic dried-out soil fundus pattern (stages 1 and 2). Complications (stage 3) were observed in 7 cases, including polypoidal choroidal vasculopathy (PCV) and macular fibrosis or atrophy. One patient was homozygous and had a form with severe Bruch's membrane (BM) thickening and macular exudation with a dried-out soil pattern in the peripheral retina. The oldest heterozygous patient, who was legally blind, had peripheral nummular pigmentary changes (stage 4). After 4 years, visual acuity was unchanged in 6 of 10 patients. The dried-out soil elementary lesions radically enlarged in patients with a preferential macular extension and confluence. These findings are in line with the progressive thickening of BM noted with age in the mouse model. During follow-up, there was no occurrence of PCV. CONCLUSIONS MCRPE is an autosomal dominant, fully penetrant retinal dystrophy with a preclinical stage, an onset after the age of 30 years, and a preserved visual acuity until occurrence of macular complications. The natural history of MCRPE is in relation to the role of MAPKAPK3 in BM modeling, vascular endothelial growth factor activity, retinal pigment epithelial responses to aging, and oxidative stress.
Collapse
Affiliation(s)
- Albert Jean-Charles
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Harold Merle
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Isabelle Audo
- Fondation Adolphe de Rothschild, Paris, France; CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris - Sorborne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris - Institute of Ophthalmology, University College of London, London, United Kingdom
| | | | - Béatrice Bocquet
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Corinne Baudoin
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Moro Sidibe
- Fondation Adolphe de Rothschild, Paris, France
| | | | - Benjamin Wolff
- Fondation Adolphe de Rothschild, Paris, France; Eye Clinic, Maison Rouge, Strasbourg, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Guy Lenaers
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - José-Alain Sahel
- Fondation Adolphe de Rothschild, Paris, France; CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris - Sorborne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris - Institute of Ophthalmology, University College of London, London, United Kingdom; Académie des Sciences, Institut de France, Paris, France
| | - Alain Gaudric
- Department of Ophthalmology, Lariboisière Hospital, Paris, France
| | - Salomon Yves Cohen
- Ophthalmic Center for Imaging and Laser, Paris, France; Department of Ophthalmology, Intercity Hospital and University Paris Est, Créteil, France
| | - Christian P Hamel
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France.
| |
Collapse
|