1
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
2
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
3
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
4
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
5
|
Hu XQ, Song R, Dasgupta C, Blood AB, Zhang L. TET2 confers a mechanistic link of microRNA-210 and mtROS in hypoxia-suppressed spontaneous transient outward currents in uterine arteries of pregnant sheep. J Physiol 2023; 601:1501-1514. [PMID: 36856073 PMCID: PMC10106393 DOI: 10.1113/jp284336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
6
|
Zheng Q, Wang T, Li X, Qian H, Bian X, Li X, Bai H, Ding S, Yan Y. Femtomolar and locus-specific detection of N 6-methyladenine in DNA by integrating double-hindered replication and nucleic acid-functionalized MB@Zr-MOF. J Nanobiotechnology 2021; 19:408. [PMID: 34876148 PMCID: PMC8650346 DOI: 10.1186/s12951-021-01156-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, a novel electrochemical biosensor was constructed for ultrasensitive and locus-specific detection of N6-Methyladenine (m6A) in DNA using double-hindered replication and nucleic acid-coated methylene blue (MB)@Zr-MOF. Based on the combination of m6A-impeded replication and AgI-mediated mismatch replication, this mode could effectively stop the extension of the strand once DNA polymerase encountered m6A site, which specifically distinguish the m6A site from natural A site in DNA. Also, Zr-MOF with high porosity and negative surface potential features was carefully chose to load cationic MB, resulting a stable and robust MB@Zr-MOF electrochemical tag. As a result, the developed biosensor exhibited a wide linear range from 1 fM to 1 nM with detection limit down to 0.89 fM. Profiting from the high sensitivity and selectivity, the biosensing strategy revealed good applicability, which had been demonstrated by quantitating m6A DNA at specific site in biological matrix. Thus, the biosensor provides a promising platform for locus-specific m6A DNA analysis. ![]()
Collapse
Affiliation(s)
- Qingyuan Zheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400016, China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingrong Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Sinha N, Lydia Walker G, Sen A. Looking at the Future Through the Mother's Womb: Gestational Diabetes and Offspring Fertility. Endocrinology 2021; 162:6379047. [PMID: 34597389 PMCID: PMC8520322 DOI: 10.1210/endocr/bqab209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Altered nutrition or intrauterine exposure to various adverse conditions during fetal development or earlier in a mother's life can lead to epigenetic changes in fetal tissues, predisposing those tissues to diseases that manifest when offspring become adults. An example is a maternal obesity associated with gestational diabetes (GDM), where fetal exposure to a hyperglycemic, hyperinsulinemic, and/or hyperlipidemic gestational environment can provoke epigenetic changes that predispose offspring to various diseased conditions later in life. While it is now well established that offspring exposed to GDM have an increased risk of developing obesity, metabolic disorders, and/or cardiovascular disease in adult life, there are limited studies assessing the reproductive health of these offspring. This mini-review discusses the long-term effect of in utero exposure to GDM-associated adverse prenatal environment on the reproductive health of the offspring. Moreover, using evidence from various animal models and human epidemiological studies, this review offers molecular insight and understanding of how epigenetic reprogramming of genes culminates in reproductive dysfunction and the development of subfertility or infertility later in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Reproductive and Developmental Sciences Program, East Lansing, Michigan 48824, USA
- Department of Animal Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gretchen Lydia Walker
- Reproductive and Developmental Sciences Program, East Lansing, Michigan 48824, USA
- Department of Animal Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, East Lansing, Michigan 48824, USA
- Department of Animal Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, 3013 Interdisciplinary Science & Technology Building, Michigan State University, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Słabuszewska-Jóźwiak A, Malinowska M, Kloska A, Jakóbkiewicz-Banecka J, Gujski M, Bojar I, Raczkiewicz D, Jakiel G. Global Changes of 5-mC/5h-mC Ratio and Methylation of Adiponectin and Leptin Gene in Placenta Depending on Mode of Delivery. Int J Mol Sci 2021; 22:3195. [PMID: 33801130 PMCID: PMC8004251 DOI: 10.3390/ijms22063195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
It was suggested that the epigenetic alterations of the placenta are associated with obesity, as well as the delivery mode. This study aimed to assess the effect of maternal outcome and delivery procedure on global placental DNA methylation status, as well as selected 5'-Cytosine-phosphate-Guanine-3' (CpG) sites in ADIPOQ and LEP genes. Global DNA methylation profile in the placenta was assessed using the 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) ratio evaluated with the ELISA, followed by target gene methylation patterns at selected gene regions which were determined using methylation-specific qPCR in 70 placentas from healthy, pregnant women with single pregnancy. We found no statistically significant differences in 5-mC/5-hmC ratio between intrapartum cesarean sections (CS) and vaginal deliveries (p = 0.214), as well as between elective cesarean sections and vaginal deliveries (p = 0.221). In intrapartum cesarean sections, the ADIPOQ demethylation index was significantly higher (the average: 1.75) compared to elective cesarean section (the average: 1.23, p = 0.010) and vaginal deliveries (the average: 1.23, p = 0.011). The LEP demethylation index did not significantly differ among elective CS, intrapartum CS, and vaginal delivery groups. The demethylation index of ADIPOQ correlated negatively with LEP in the placenta in the vaginal delivery group (r = -0.456, p = 0.017), but not with the global methylation. The methylation of a singular locus might be different depending on the mode of delivery and uterine contractions. Further studies should be conducted with locus-specific analysis of the whole genome to detect the methylation index of specific genes involved in metabolism.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Kleczewska 61/63, 01-826 Warsaw, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| |
Collapse
|
9
|
Scisciola L, Rizzo MR, Marfella R, Cataldo V, Fontanella RA, Boccalone E, Paolisso G, Barbieri M. New insight in molecular mechanisms regulating SIRT6 expression in diabetes: Hyperglycaemia effects on SIRT6 DNA methylation. J Cell Physiol 2020; 236:4604-4613. [PMID: 33251641 DOI: 10.1002/jcp.30185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Conflicting data are reported on the relationship between hyperglycaemia, diabetes and SIRT6 expression. To elucidate hyperglycaemia-induced molecular mechanisms regulating SIRT6 expression, the effect of hyperglycaemia on DNA methylation and SIRT6 expression has been evaluated in human aortic endothelial cells exposed to high glucose. DNA methylation of SIRT6 and any potential clinical implication was also evaluated in type 2 diabetic patients and compared with healthy controls. Endothelial cells exposed to high glucose showed lower methylation levels in SIRT6 promoter and increased SIRT6 and TET2 expression. The high glucose-induced epigenetic changes persisted after 48 h of glucose normalization. Diabetic patients showed lower levels of SIRT6 DNA methylation compared with nondiabetic patients. SIRT6 DNA methylation levels inversely correlated with plasma glucose. Our results firstly demonstrate the involvement of epigenetic mechanisms in regulating SIRT6 expression. Further experiments are necessary to clarify metabolic memory mechanisms driving to diabetic complications and how SIRT6 is potentially involved.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Maria R Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Rosaria A Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Eugenio Boccalone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", L. Vanvitelli, Naples, Italy
| |
Collapse
|
10
|
Green HLH, Brewer AC. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics 2020; 12:59. [PMID: 32345373 PMCID: PMC7189706 DOI: 10.1186/s13148-020-00848-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical, social and economic burden of cardiovascular disease (CVD) associated with diabetes underscores an urgency for understanding the disease aetiology. Evidence suggests that the hyperglycaemia associated with diabetes is, of itself, causal in the development of endothelial dysfunction (ED) which is recognised to be the critical determinant in the development of CVD. It is further recognised that epigenetic modifications associated with changes in gene expression are causal in both the initiation of ED and the progression to CVD. Understanding whether and how hyperglycaemia induces epigenetic modifications therefore seems crucial in the development of preventative treatments. A mechanistic link between energy metabolism and epigenetic regulation is increasingly becoming explored as key energy metabolites typically serve as substrates or co-factors for epigenetic modifying enzymes. Intriguing examples are the ten-eleven translocation and Jumonji C proteins which facilitate the demethylation of DNA and histones respectively. These are members of the 2-oxoglutarate-dependent dioxygenase superfamily which require the tricarboxylic acid metabolite, α-ketoglutarate and molecular oxygen (O2) as substrates and Fe (II) as a co-factor. An understanding of precisely how the biochemical effects of high glucose exposure impact upon cellular metabolism, O2 availability and cellular redox in endothelial cells (ECs) may therefore elucidate (in part) the mechanistic link between hyperglycaemia and epigenetic modifications causal in ED and CVD. It would also provide significant proof of concept that dysregulation of the epigenetic landscape may be causal rather than consequential in the development of pathology.
Collapse
Affiliation(s)
- Hannah L H Green
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
11
|
Zhang Y, Zheng D, Fang Q, Zhong M. Aberrant hydroxymethylation of ANGPTL4 is associated with selective intrauterine growth restriction in monochorionic twin pregnancies. Epigenetics 2020; 15:887-899. [PMID: 32114885 DOI: 10.1080/15592294.2020.1737355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective intrauterine growth restriction (sIUGR) is a severe complication in monochorionic (MC) twin pregnancies, and it carries increased risks of poor prognosis. Current data suggest that vascular anastomoses and unequal placental sharing may be the key contributor to discordant foetal growth. While MC twins derive from a single zygote and have almost identical genetic information, the precise mechanisms remain unknown. DNA hydroxymethylation is a newly discovered epigenetic feature associated with gene regulation and modification. Here, we investigate discordant hydroxymethylation patterns between two placental shares of sIUGR and analyse the potential role of aberrant hydroxymethylation of angiopoietin-like 4 (ANGPTL4) in placental dysplasia. Hydroxymethylation DNA immunoprecipitation (hMeDIP)-chip and mRNA sequencing were performed to identify hydroxymethylation-associated genes. Real-time qPCR, western blotting, and immunohistochemistry were used to confirm ANGPTL4 expression. The mechanisms regulating ANGPTL4 were investigated by cell migration assay, invasion assay, viability assay, and apoptotic ratio assays, western blotting and hMeDIP-qPCR. Decreased ANGPTL4 was detected in the smaller placental shares of sIUGR. ANGPTL4 knockdown suppressed trophoblast invasiveness and migration, which possibly occurred through hypoxia inducible factor 1α (HIF-1α) and HIF-1 signalling pathway. Hypoxia leads to aberrant expression of ANGPTL4 and HIF-1α, positively correlated with their aberrant hydroxymethylation levels in promoter regions. Aberrant hydroxymethylation of ANGPTL4 may contribute to placental impairment by the HIF-1 signalling pathway in smaller placental shares of sIUGR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Dezhong Zheng
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University , Guangzhou, China.,Department of Cardiology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University , Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
12
|
Spearman AD, Ke X, Fu Q, Lane RH, Majnik A. Adverse maternal environment leads to cardiac fibrosis in adult male mice. Birth Defects Res 2019; 110:1551-1555. [PMID: 30576090 DOI: 10.1002/bdr2.1428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/21/2018] [Accepted: 11/02/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cardiac fibrosis is a cardinal feature of multiple types of cardiovascular disease, which lead to heart failure. Multiple studies connect adverse maternal environment (AME) with cardiac fibrosis. AME does not always result in fibrosis, though. An additional "insult", such as an adult Western diet (WD), is frequently necessary. The additive effects of AME and adult WD on cardiac fibrosis is not well-understood. AME can also alter DNA methylation. DNA methyltransferase (DNMT) and ten-eleven translocation (TET) are methylation modifying genes that regulate DNA methylation, but it is unknown if AME changes cardiac gene expression of DNMT and TET. We sought to use a model of AME and adult WD to investigate the development of cardiac fibrosis and cardiac mRNA expression of DNMT and TET genes. METHODS We exposed dams to WD or control diet (CD) 5 weeks before pregnancy and through lactation. We added environmental stressors during the last third of pregnancy to dams on WD to create AME. Dams on CD experienced no added stressors to create control maternal environment (CME). Male offspring were weaned at Postnatal Week 3 (W3) and placed on WD or CD to create four groups: CME-CD, CME-WD, AME-CD, and AME-WD. RESULTS AME-WD increased cardiac fibrosis in adulthood (p < .05), whereas AME-CD and CME-WD did not. TET1-3 and DNMT3a mRNA levels decreased in AME versus CME offspring (p < .01). CONCLUSION AME increases susceptibility to cardiac fibrosis in adult male mice. Early-life changes to TET expression may mediate susceptibility to fibrosis, but further testing is needed.
Collapse
Affiliation(s)
- Andrew D Spearman
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xingrao Ke
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Qi Fu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Lane
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amber Majnik
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Yuan EF, Yang Y, Cheng L, Deng X, Chen SM, Zhou X, Liu SM. Hyperglycemia affects global 5-methylcytosine and 5-hydroxymethylcytosine in blood genomic DNA through upregulation of SIRT6 and TETs. Clin Epigenetics 2019; 11:63. [PMID: 30987683 PMCID: PMC6466651 DOI: 10.1186/s13148-019-0660-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/31/2019] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests that epigenetic changes play key roles in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the dynamic regulation of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in diabetic peripheral blood DNA remains to be elucidated. Results We collected fasting blood samples (104 patients and 108 healthy controls) and glucose-stimulated blood samples at different time points (11 patients and 5 healthy controls underwent oral glucose tolerance test (OGTT)), as well as blood samples from six couples of diabetic and control rats. A HPLC-MS/MS system was used for quantifying global 5mC and 5hmC in genomic DNA from white blood cells (WBCs), and qPCR was performed for detecting mRNA expression of SIRT6 and TETs. We found that global 5mC decreased, while global 5hmC increased in both patients and diabetic rats, with lower 5mC being a risk factor of T2DM (OR = 0.524, 95%CI 0.402–0.683, p = 1.64 × 10−6). The OGTT data from patients showed that 5mC declined within 1 h and then returned to the fasting status at 2 h, while 5hmC rose from 0.5 h to 3 h with increasing glucose. However, the similar patterns were not found in the controls. The mRNA expression of TET2, TET3, and SIRT6 was upregulated in patients (p = 0.012, p = 0.026, and p = 0.035, respectively). The similar results were observed in diabetic OGTT and rats. Correlation analysis indicated that SIRT6 was positively correlated with TET2 in humans (r = 0.277, p < 0.001) and rats (r = 0.942, p < 0.001), in addition to a correlation between glucose and SIRT6 (r = 0.162, p = 0.045) and TET2 (r = 0.174, p = 0.036). Conclusions Hyperglycemia appeared to promote the mRNA expression of SIRT6 and TETs, which in turn might cause the dynamic changes of 5mC and 5hmC in WBCs from T2DM patients. Electronic supplementary material The online version of this article (10.1186/s13148-019-0660-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Er-Feng Yuan
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China.,Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Lin Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xujing Deng
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Shao-Min Chen
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Xin Zhou
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
14
|
Effect of Oxidative Stress on the Estrogen-NOS-NO-K Ca Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9194269. [PMID: 30881600 PMCID: PMC6387699 DOI: 10.1155/2019/9194269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.
Collapse
|
15
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
16
|
Hu XQ, Dasgupta C, Xiao J, Yang S, Zhang L. Long-term high altitude hypoxia during gestation suppresses large conductance Ca 2+ -activated K + channel function in uterine arteries: a causal role for microRNA-210. J Physiol 2018; 596:5891-5906. [PMID: 29869786 DOI: 10.1113/jp276058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Gestational hypoxia represses ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression in uterine arteries, which is recovered by inhibiting endogenous miR-210. Inhibition of miR-210 rescues BKCa channel expression and current in uterine arteries of pregnant animals acclimatized to high altitude hypoxia in a TET-dependent manner. miR-210 blockade restores BKCa channel-mediated relaxations and attenuates pressure-dependent myogenic tone in uterine arteries of pregnant animals acclimatized to high altitude. ABSTRACT Gestational hypoxia at high altitude has profound adverse effects on the uteroplacental circulation, and is associated with increased incidence of preeclampsia and fetal intrauterine growth restriction. Previous studies demonstrated that suppression of large-conductance Ca2+ -activated K+ (BKCa ) channel function played a critical role in the maladaptation of uteroplacental circulation caused by gestational hypoxia. Yet, the mechanisms underlying gestational hypoxia-induced BKCa channel repression remain undetermined. The present study investigated a causal role of microRNA-210 (miR-210) in hypoxia-mediated repression of BKCa channel expression and function in uterine arteries using a sheep model. The results revealed that gestational hypoxia significantly decreased ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression in uterine arteries, which was recovered by inhibiting endogenous miR-210 with miR-210 locked nucleic acid (miR-210-LNA). Of importance, miR-210-LNA restored BKCa channel β1 subunit expression in uterine arteries, which was blocked by a competitive TET inhibitor, fumarate, thus functionally linking miR-210 to the TET1-BKCa channel cascade. In addition, miR-210-LNA reversed hypoxia-mediated suppression of BKCa channel function and rescued the effect of steroid hormones in upregulating BKCa channel expression and function in uterine arteries, which were also ablated by fumarate. Collectively, the present study demonstrates a causative effect of miR-210 in the downregulation of TET1 and subsequent repression of BKCa channel expression and function, providing a novel mechanistic insight into the regulation of BKCa channel function and the molecular basis underlying the maladaptation of uterine vascular function in gestational hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jeffery Xiao
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA, USA
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
17
|
Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 2018; 50:432-442. [DOI: 10.1038/s41588-018-0055-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
18
|
Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61:6-20. [PMID: 29128937 PMCID: PMC6448927 DOI: 10.1007/s00125-017-4490-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023]
Abstract
When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Janna A van Diepen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Assam El-Osta
- Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
19
|
Gussenhoven R, Ophelders DRMG, Kemp MW, Payne MS, Spiller OB, Beeton ML, Stock SJ, Cillero-Pastor B, Barré FPY, Heeren RMA, Kessels L, Stevens B, Rutten BP, Kallapur SG, Jobe AH, Kramer BW, Wolfs TGAM. The Paradoxical Effects of Chronic Intra-Amniotic Ureaplasma parvum Exposure on Ovine Fetal Brain Development. Dev Neurosci 2017; 39:472-486. [PMID: 28848098 DOI: 10.1159/000479021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/24/2017] [Indexed: 01/23/2023] Open
Abstract
Chorioamnionitis is associated with adverse neurodevelopmental outcomes in preterm infants. Ureaplasma spp. are the microorganisms most frequently isolated from the amniotic fluid of women diagnosed with chorioamnionitis. However, controversy remains concerning the role of Ureaplasma spp. in the pathogenesis of neonatal brain injury. We hypothesize that reexposure to an inflammatory trigger during the perinatal period might be responsible for the variation in brain outcomes of preterms following Ureaplasma-driven chorioamnionitis. To investigate these clinical scenarios, we performed a detailed multimodal study in which ovine neurodevelopmental outcomes were assessed following chronic intra-amniotic Ureaplasma parvum (UP) infection either alone or combined with subsequent lipopolysaccharide (LPS) exposure. We show that chronic intra-amniotic UP exposure during the second trimester provoked a decrease in astrocytes, increased oligodendrocyte numbers, and elevated 5-methylcytosine levels. In contrast, short-term LPS exposure before preterm birth induced increased microglial activation, myelin loss, elevation of 5-hydroxymethylcytosine levels, and lipid profile changes. These LPS-induced changes were prevented by chronic preexposure to UP (preconditioning). These data indicate that chronic UP exposure has dual effects on preterm brain development in utero. On the one hand, prolonged UP exposure causes detrimental cerebral changes that may predispose to adverse postnatal clinical outcomes. On the other, chronic intra-amniotic UP exposure preconditions the brain against a second inflammatory hit. This study demonstrates that microbial interactions and the timing and duration of the inflammatory insults determine the effects on the fetal brain. Therefore, this study helps to understand the complex and diverse postnatal neurological outcomes following UP driven chorioamnionitis.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cardenas A, Rifas-Shiman SL, Godderis L, Duca RC, Navas-Acien A, Litonjua AA, DeMeo DL, Brennan KJ, Amarasiriwardena CJ, Hivert MF, Gillman MW, Oken E, Baccarelli AA. Prenatal Exposure to Mercury: Associations with Global DNA Methylation and Hydroxymethylation in Cord Blood and in Childhood. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087022. [PMID: 28934725 PMCID: PMC5783674 DOI: 10.1289/ehp1467] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/04/2017] [Accepted: 05/19/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mercury is a global pollutant, and prenatal exposure is associated with adverse health effects. To date, no studies have evaluated the association between prenatal mercury exposure and DNA hydroxymethylation, an epigenetic modification important for tissue differentiation and embryonic development. OBJECTIVES We sought to evaluate the association between prenatal mercury exposure and offspring global DNA methylation and hydroxymethylation at birth and test for persistence of the association in childhood. METHODS Within Project Viva, a U.S. prebirth cohort, we examined associations of maternal second trimester red blood cell mercury (RBC-Hg) concentrations with global 5-hydroxymethylcytosine (%-5hmC) and 5-methylcytosine (%-5mC) DNA content in blood collected at birth (n=306), early childhood (n=68; 2.9 to 4.9 y), and midchildhood (n=260; 6.7 to 10.5 y). RESULTS Median prenatal RBC-Hg concentration was 3.23μg/g [interquartile range (IQR)=3.29]. At birth, median cord blood %-5mC, %-5hmC, and their ratio were 4.95%, 0.22%, and 24.37, respectively. The mean adjusted difference [95% confidence interval (CI)] of blood %-5hmC for a doubling in prenatal RBC-Hg concentration was -0.013% (-0.029, 0.002), -0.031% (-0.056, -0.006), and 0.005% (-0.007, 0.018) at birth, early, and midchildhood, respectively. The corresponding relative adjusted change in the genomic ratio of %-5mC to %-5hmC for a doubling in prenatal RBC-Hg concentration was 4.70% (0.04, 9.58), 22.42% (7.73, 39.11), and 0.73% (-4.18, 5.88) at birth, early, and midchildhood, respectively. No associations were present between prenatal maternal RBC-Hg and %-5mC at any time point. CONCLUSIONS Prenatal mercury exposure was associated with lower %-5hmC genomic content and a corresponding increase in the ratio of %-5mC to %-5hmC in cord blood. This association was persistent in early but not midchildhood blood. Our results demonstrate the potential malleability of epigenetic modifications associated with mercury exposure in utero. https://doi.org/10.1289/EHP1467.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Lode Godderis
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
- IDEWE , External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Radu-Corneliu Duca
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Chitra J Amarasiriwardena
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Matthew W Gillman
- Environmental Influences on Child Health Outcomes (ECHO) Program, Office of the Director, National Institutes of Health , Department of Health and Human Services, Bethesda, Maryland, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| |
Collapse
|
21
|
Ji L, Chen Z, Xu Y, Xiong G, Liu R, Wu C, Hu H, Wang L. Systematic Characterization of Autophagy in Gestational Diabetes Mellitus. Endocrinology 2017; 158:2522-2532. [PMID: 28838138 DOI: 10.1210/en.2016-1922] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
Abstract
Autophagy is a dynamic process that degrades and recycles cellular organelles and proteins to maintain cell homeostasis. Alterations in autophagy occur in various diseases; however, the role of autophagy in gestational diabetes mellitus (GDM) is unknown. In the present study, we characterized the roles and functions of autophagy in GDM patient samples and extravillous trophoblasts cultured with glucose. We found significantly enhanced autophagy in GDM patients. Moreover, high glucose levels enhanced autophagy and cell apoptosis, reducing proliferation and invasion, and these effects were ameliorated through knockdown of ATG5. Genome-wide 5-hydroxymethylcytosine data analysis further revealed the epigenomic regulatory circuitry underlying the induced autophagy and apoptosis in GDM and preeclampsia. Finally, RNA sequencing was performed to identify gene expression changes and critical signaling pathways after silencing of ATG5. Our study has demonstrated the substantial functions of autophagy in GDM and provides potential therapeutic targets for the treatment of GDM patients.
Collapse
Affiliation(s)
- Lulu Ji
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Human Anatomy, Basic Medical Sciences of Xinxiang Medical University, Xinxiang 453003, China
| | - Yating Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guoping Xiong
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Rui Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hanyang Hu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lin Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
22
|
Hu XQ, Dasgupta C, Xiao D, Huang X, Yang S, Zhang L. MicroRNA-210 Targets Ten-Eleven Translocation Methylcytosine Dioxygenase 1 and Suppresses Pregnancy-Mediated Adaptation of Large Conductance Ca 2+-Activated K + Channel Expression and Function in Ovine Uterine Arteries. Hypertension 2017; 70:HYPERTENSIONAHA.117.09864. [PMID: 28739977 PMCID: PMC5783798 DOI: 10.1161/hypertensionaha.117.09864] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
Gestational hypoxia inhibits large conductance Ca2+-activated K+ (BKCa) channel expression and function in uterine arterial adaptation to pregnancy. Given the findings that microRNA-210 (miR-210) is increased in hypoxia during gestation and preeclampsia, the present study sought to investigate the role of miR-210 in the regulation of BKCa channel adaptation in the uterine artery. Gestational hypoxia significantly increased uterine vascular resistance and blood pressure in pregnant sheep and upregulated miR-210 in uterine arteries. MiR-210 bound to ovine ten-eleven translocation methylcytosine dioxygenase 1 mRNA 3' untranslated region and decreased ten-eleven translocation methylcytosine dioxygenase 1 mRNA and protein abundance in uterine arteries of pregnant sheep, as well as abrogated steroid hormone-induced upregulation of ten-eleven translocation methylcytosine dioxygenase 1 expression in uterine arteries of nonpregnant animals. In accordance, miR-210 blocked pregnancy- and steroid hormone-induced upregulation of BKCa channel β1 subunit expression in uterine arteries. Functionally, miR-210 suppressed BKCa channel current density in uterine arterial myocytes of pregnant sheep and inhibited steroid hormone-induced increases in BKCa channel currents in uterine arteries of nonpregnant animals. Blockade of endogenous miR-210 inhibited hypoxia-induced suppression of BKCa channel activity. In addition, miR-210 decreased BKCa channel-mediated relaxations and increased pressure-dependent myogenic tone of uterine arteries. Together, the results demonstrate that miR-210 plays an important role in the downregulation of ten-eleven translocation methylcytosine dioxygenase 1 and repression of BKCa channel function in uterine arteries, revealing a novel mechanism of epigenetic regulation in the maladaptation of uterine hemodynamics in gestational hypoxia and preeclampsia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.)
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.)
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.)
| | - Xiaohui Huang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.)
| | - Shumei Yang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.)
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, CA (X.-Q.H., C.D., D.X., X.H., L.Z.); and Department of Chemistry and Biochemistry, California State University, San Bernardino (S.Y.).
| |
Collapse
|
23
|
Shi DQ, Ali I, Tang J, Yang WC. New Insights into 5hmC DNA Modification: Generation, Distribution and Function. Front Genet 2017; 8:100. [PMID: 28769976 PMCID: PMC5515870 DOI: 10.3389/fgene.2017.00100] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023] Open
Abstract
Dynamic DNA modifications, such as methylation/demethylation on cytosine, are major epigenetic mechanisms to modulate gene expression in both eukaryotes and prokaryotes. In addition to the common methylation on the 5th position of the pyrimidine ring of cytosine (5mC), other types of modifications at the same position, such as 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC), are also important. Recently, 5hmC, a product of 5mC demethylation by the Ten-Eleven Translocation family proteins, was shown to regulate many cellular and developmental processes, including the pluripotency of embryonic stem cells, neuron development, and tumorigenesis in mammals. Here, we review recent advances on the generation, distribution, and function of 5hmC modification in mammals and discuss its potential roles in plants.
Collapse
Affiliation(s)
- Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jun Tang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
24
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
25
|
Li X, Zhang M, Pan X, Xu Z, Sun M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res 2017; 109:744-757. [PMID: 28509412 DOI: 10.1002/bdr2.1037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiang Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Mengshu Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences
- Key Laboratory of Biochip Technology in Guangdong province; Southern Medical University; Guangzhou China
- Department of Genetics; Yale University School of Medicine; New Haven Connecticut
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| |
Collapse
|
26
|
Moen GH, Sommer C, Prasad RB, Sletner L, Groop L, Qvigstad E, Birkeland KI. MECHANISMS IN ENDOCRINOLOGY: Epigenetic modifications and gestational diabetes: a systematic review of published literature. Eur J Endocrinol 2017; 176:R247-R267. [PMID: 28232369 DOI: 10.1530/eje-16-1017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To summarize the current knowledge on epigenetic alterations in mother and offspring subjected to gestational diabetes (GDM) and indicate future topics for research. DESIGN Systematic review. METHODS We performed extensive searches in PubMed, EMBASE and Google scholar, using a combination of the search terms: GDM, gestational diabetes, epigenetic(s), methylation, histone modification, histone methylation, histone acetylation, microRNA and miRNA. Studies that compared women diagnosed with GDM and healthy controls were included. Two authors independently scanned the abstracts, and all included papers were read by at least two authors. The searches were completed on October 31st, 2016. RESULTS We identified 236 articles, of which 43 were considered relevant for this systematic review. Studies published showed that epigenetic alterations could be found in both mothers with GDM and their offspring. However, differences in methodology, diagnostic criteria for GDM and populations studied, together with a limited number of published studies and small sample sizes, preclude clear conclusions about the role of epigenetic modifications in transmitting risk from GDM mothers to their offspring. CONCLUSION The current research literature suggests that GDM may have impact on epigenetic modifications in the mother and offspring. However, larger studies that include multiple cohorts of GDM patients and their offspring are needed.
Collapse
Affiliation(s)
- Gunn-Helen Moen
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of MedicineUniversity of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Christine Sommer
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Rashmi B Prasad
- Department of Clinical SciencesDiabetes and Endocrinology CRC, Lund University Diabetes Centre, Malmö, Sweden
| | - Line Sletner
- Department of Pediatric and Adolescents MedicineAkershus University Hospital, Lørenskog, Norway
- MRC Lifecourse Epidemiology UnitUniversity of Southampton, Southampton General Hospital, Southampton, UK
| | - Leif Groop
- Department of Clinical SciencesDiabetes and Endocrinology CRC, Lund University Diabetes Centre, Malmö, Sweden
- Finnish Institute of Molecular Medicine (FIMM)Helsinki University, Helsinki, Finland
| | - Elisabeth Qvigstad
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kåre I Birkeland
- Department of EndocrinologyMorbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of MedicineUniversity of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Transplantation MedicineOslo University Hospital, Oslo, Norway
| |
Collapse
|