1
|
Wang J, Huang Y, Bei C, Yang H, Lin Z, Xu L. Causal associations of antioxidants with Alzheimer's disease and cognitive function: a Mendelian randomisation study. J Epidemiol Community Health 2024; 78:424-430. [PMID: 38589220 DOI: 10.1136/jech-2023-221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Circulating antioxidants are associated with a lower risk of Alzheimer's disease (AD) in observational studies, suggesting potential target areas for intervention. However, whether the associations are causal remains unclear. Here, we studied the causality between antioxidants and AD or cognitive function using two-sample Mendelian randomisation (MR). METHODS Single nucleotide polymorphisms strongly (p<5×10-8) associated with antioxidants (vitamin A, vitamin C, zinc, selenium, β-carotene and urate) and outcomes (AD, cognitive performance and reaction time) were obtained from the largest and most recent genome-wide association studies (GWAS). MR inverse variance weighting (IVW) and MR pleiotropy residual sum and outlier test (MR-PRESSO) were used for data analysis. RESULTS Higher genetically determined selenium level was associated with 5% higher risk of AD (OR 1.047, 95% CI 1.005 to 1.091, p=0.028) using IVW. Higher genetically determined urate level was associated with worse cognitive performance (β=-0.026, 95% CI -0.044 to -0.008, p=0.005) using MR-PRESSO. No association between the other antioxidants and AD, cognitive performance and reaction time was found. Similar results were found in the sensitivity analyses. CONCLUSION Our results suggest that lifelong exposure to higher selenium may be associated with a higher risk of AD, and higher urate levels could be associated with worse cognitive performance. Further analyses using larger GWAS of antioxidants are warranted to confirm these observations. Our results suggest that caution is needed in the interpretation of traditional observational evidence on the neuroprotective effects of antioxidants.
Collapse
Affiliation(s)
- Jiao Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingyue Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunhua Bei
- School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Huiling Yang
- Eastern-fusion Master Studio of Hezhou, Hezhou, China
| | - Zihong Lin
- Hezhou Research Institute of Longevity Health Science, Hezhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
2
|
Recurrent somatic mutations as predictors of immunotherapy response. Nat Commun 2022; 13:3938. [PMID: 35803911 PMCID: PMC9270330 DOI: 10.1038/s41467-022-31055-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint blockade (ICB) has transformed the treatment of metastatic cancer but is hindered by variable response rates. A key unmet need is the identification of biomarkers that predict treatment response. To address this, we analyzed six whole exome sequencing cohorts with matched disease outcomes to identify genes and pathways predictive of ICB response. To increase detection power, we focus on genes and pathways that are significantly mutated following correction for epigenetic, replication timing, and sequence-based covariates. Using this technique, we identify several genes (BCLAF1, KRAS, BRAF, and TP53) and pathways (MAPK signaling, p53 associated, and immunomodulatory) as predictors of ICB response and develop the Cancer Immunotherapy Response CLassifiEr (CIRCLE). Compared to tumor mutational burden alone, CIRCLE led to superior prediction of ICB response with a 10.5% increase in sensitivity and a 11% increase in specificity. We envision that CIRCLE and more broadly the analysis of recurrently mutated cancer genes will pave the way for better prognostic tools for cancer immunotherapy.
Collapse
|
3
|
Cucinotta F, Ricciardello A, Turriziani L, Mancini A, Keller R, Sacco R, Persico AM. Efficacy and Safety of Q10 Ubiquinol With Vitamins B and E in Neurodevelopmental Disorders: A Retrospective Chart Review. Front Psychiatry 2022; 13:829516. [PMID: 35308885 PMCID: PMC8927903 DOI: 10.3389/fpsyt.2022.829516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Increased oxidative stress and defective mitochondrial functioning are shared features among many brain disorders. The aim of this study was to verify retrospectively the clinical efficacy and safety of a metabolic support therapy with Q10 ubiquinol, vitamin E and complex-B vitamins in various neurodevelopmental disorders. This retrospective chart review study included 59 patients (mean age 10.1 ± 1.2 y.o., range 2.5-39 years; M:F = 2.47:1), diagnosed with Autism Spectrum Disorder (n = 17), Autism Spectrum Disorder with co-morbid Intellectual Disability (n = 19), Intellectual Disability or Global Developmental Delay (n = 15), Attention-Deficit/Hyperactivity Disorder (n = 3) and Intellectual Disability in Phelan-McDermid syndrome due to chr. 22q13.33 deletion (n = 5). After a minimum of 3 months of therapy, a positive outcome was recorded in 45/59 (76.27%) patients, with Clinical Global Impression-Improvement scores ranging between 1 ("very much improved") and 3 ("minimally improved"). The most widespread improvements were recorded in cognition (n = 26, 44.1%), adaptative functioning (n = 26, 44.1%) and social motivation (n = 19, 32.2%). Improvement rates differed by diagnosis, being observed most consistently in Phelan-McDermid Syndrome (5/5, 100%), followed by Intellectual Disability/Global Developmental Delay (13/15, 86.7%), Autism Spectrum Disorder with co-morbid Intellectual Disability (15/19, 78.9%), Autism Spectrum Disorder (11/17, 64.7%) and ADHD (1/3, 33.3%). No significant adverse event or side effect leading to treatment discontinuation were recorded. Mild side effects were reported in 18 (30.5%) patients, with the most frequent being increased hyperactivity (9/59, 15.3%). This retrospective chart review suggests that metabolic support therapy with Q10 ubiquinol, vitamin E and complex-B vitamins is well tolerated and produces some improvement in the majority of patients with neurodevelopmental disorders, especially in the presence of intellectual disability. Randomized controlled trials for each single neurodevelopmental disorder are now warranted to conclusively demonstrate the efficacy of these mitochondrial bioenergetic and antioxidant agents and to estimate their therapeutic effect size.
Collapse
Affiliation(s)
- Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy.,IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy.,Villa Miralago, Cuasso al Monte, Italy
| | - Laura Turriziani
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Arianna Mancini
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Roberto Keller
- Mental Health Department, Adult Autism Centre, Rete Ospedaliera Territorio Nord-Ovest, Azienda Sanitaria Locale Città di Torino, Turin, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program, Modena University Hospital and Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J Neural Transm (Vienna) 2021; 128:717-734. [PMID: 34115189 DOI: 10.1007/s00702-021-02360-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Based on recent evidence, more than 200 susceptibility genes have been identified to be associated with autism until now. Correspondingly, cytogenetic abnormalities have been reported for almost every chromosome. While the results of multiple genes associated with risk factors for autism are still incomplete, this paper systematically reviews published meta-analyses and systematic reviews of evidence related to autism occurrence. METHOD Literature search was conducted in the PubMed system, and the publication dates were limited between January 2000 and July 2020. We included a meta-analysis and systematic review that assessed the impact of related gene variants on the development of autism. After screening, this comprehensive literature search identified 31 meta-analyses and ten systematic reviews. We arranged the genes related to autism in the published studies according to the order of the chromosomes, and based on the results of a meta-analysis and systematic review, we selected 6 candidate genes related to ASD, namely MTHFR C677T, SLC25A12, OXTR, RELN, 5-HTTLPR, SHANK, including basic features and functions. In addition to these typical genes, we have also listed candidate genes that may exist on almost every chromosome that are related to autism. RESULTS We found that the results of several literature reviews included in this study showed that the MTHFR C667T variant was a risk factor for the occurrence of ASD, and the results were consistent. The results of studies on SLC25A12 variation (rs2056202 and rs2292813) and ASD risk were inconsistent but statistically significant. No association of 5-HTTLPR was found with autism, but when subgroup analysis was performed according to ethnicity, the association was statistically significant. RELN variants (rs362691 and rs736707) were consistent with ASD risk studies, but some of the results were not statistically significant. CONCLUSION This review summarized the well-known ASD candidate genes and listed some new genes that need further study in larger sample sets to improve our understanding of the genetic basis of ASD, but sample size and heterogeneity remain major limiting factors in some genome-wide association studies. We also found that common genetic variants in some genes may be co-risk factors for autism or other neuropsychiatric disorders when we collated these results. It is worth considering screening for these mutations in clinical applications.
Collapse
|
5
|
CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Are Associated with Increased Serum Coenzyme Q 10 after Long-Term Supplementation in Women. Antioxidants (Basel) 2021; 10:antiox10030431. [PMID: 33799730 PMCID: PMC7998724 DOI: 10.3390/antiox10030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Coenzyme Q10 (CoQ10), an essential component for energy production that exhibits antioxidant activity, is considered a health-supporting and antiaging supplement. However, intervention-controlled studies have provided variable results on CoQ10 supplementation benefits, which may be attributed to individual CoQ10 bioavailability differences. This study aimed to investigate the relationship between genetic polymorphisms and CoQ10 serum levels after long-term supplementation. CoQ10 levels at baseline and after one year of supplementation (150 mg) were determined, and eight single nucleotide polymorphisms (SNPs) in cholesterol metabolism and CoQ10 absorption, efflux, and cellular uptake related genes were assessed. Rs2032582 (ABCB1) and rs1761667 (CD36) were significantly associated with a higher increase in CoQ10 levels in women. In addition, in women, rs3808607 (CYP7A1) and rs2072183 (NPC1L1) were significantly associated with a higher increase in CoQ10 per total cholesterol levels. Subgroup analyses showed that these four SNPs were useful for classifying high- or low-responder to CoQ10 bioavailability after long-term supplementation among women, but not in men. On the other hand, in men, no SNP was found to be significantly associated with increased serum CoQ10. These results collectively provide novel evidence on the relationship between genetics and CoQ10 bioavailability after long-term supplementation, which may help understand and assess CoQ10 supplementation effects, at least in women.
Collapse
|
6
|
Comprehensive Proteomic Analysis Reveals Intermediate Stage of Non-Lesional Psoriatic Skin and Points out the Importance of Proteins Outside this Trend. Sci Rep 2019; 9:11382. [PMID: 31388062 PMCID: PMC6684579 DOI: 10.1038/s41598-019-47774-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 11/15/2022] Open
Abstract
To better understand the pathomechanism of psoriasis, a comparative proteomic analysis was performed with non-lesional and lesional skin from psoriasis patients and skin from healthy individuals. Strikingly, 79.9% of the proteins that were differentially expressed in lesional and healthy skin exhibited expression levels in non-lesional skin that were within twofold of the levels observed in healthy and lesional skin, suggesting that non-lesional skin represents an intermediate stage. Proteins outside this trend were categorized into three groups: I. proteins in non-lesional skin exhibiting expression similar to lesional skin, which might be predisposing factors (i.e., CSE1L, GART, MYO18A and UGDH); II. proteins that were differentially expressed in non-lesional and lesional skin but not in healthy and lesional skin, which might be non-lesional characteristic alteration (i.e., CHCHD6, CHMP5, FLOT2, ITGA7, LEMD2, NOP56, PLVAP and RRAS); and III. proteins with contrasting differential expression in non-lesional and lesional skin compared to healthy skin, which might contribute to maintaining the non-lesional state (i.e., ITGA7, ITGA8, PLVAP, PSAPL1, SMARCA5 and XP32). Finally, proteins differentially expressed in lesions may indicate increased sensitivity to stimuli, peripheral nervous system alterations, furthermore MYBBP1A and PRKDC were identified as potential regulators of key pathomechanisms, including stress and immune response, proliferation and differentiation.
Collapse
|
7
|
Montero R, Yubero D, Salgado MC, González MJ, Campistol J, O'Callaghan MDM, Pineda M, Delgadillo V, Maynou J, Fernandez G, Montoya J, Ruiz-Pesini E, Meavilla S, Neergheen V, García-Cazorla A, Navas P, Hargreaves I, Artuch R. Plasma coenzyme Q 10 status is impaired in selected genetic conditions. Sci Rep 2019; 9:793. [PMID: 30692599 PMCID: PMC6349877 DOI: 10.1038/s41598-018-37542-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Identifying diseases displaying chronic low plasma Coenzyme Q10 (CoQ) values may be important to prevent possible cardiovascular dysfunction. The aim of this study was to retrospectively evaluate plasma CoQ concentrations in a large cohort of pediatric and young adult patients. We evaluated plasma CoQ values in 597 individuals (age range 1 month to 43 years, average 11 years), studied during the period 2005–2016. Patients were classified into 6 different groups: control group of healthy participants, phenylketonuric patients (PKU), patients with mucopolysaccharidoses (MPS), patients with other inborn errors of metabolism (IEM), patients with neurogenetic diseases, and individuals with neurological diseases with no genetic diagnosis. Plasma total CoQ was measured by reverse-phase high-performance liquid chromatography with electrochemical detection and ultraviolet detection at 275 nm. ANOVA with Bonferroni correction showed that plasma CoQ values were significantly lower in the PKU and MPS groups than in controls and neurological patients. The IEM group showed intermediate values that were not significantly different from those of the controls. In PKU patients, the Chi-Square test showed a significant association between having low plasma CoQ values and being classic PKU patients. The percentage of neurogenetic and other neurological patients with low CoQ values was low (below 8%). In conclusión, plasma CoQ monitoring in selected groups of patients with different IEM (especially in PKU and MPS patients, but also in IEM under protein-restricted diets) seems advisable to prevent the possibility of a chronic blood CoQ suboptimal status in such groups of patients.
Collapse
Affiliation(s)
- Raquel Montero
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain
| | - Delia Yubero
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maria C Salgado
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - María Julieta González
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jaume Campistol
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain
| | - Maria Del Mar O'Callaghan
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain
| | - Mercè Pineda
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Verónica Delgadillo
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Joan Maynou
- Department of Genetic and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Guerau Fernandez
- Department of Genetic and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain.,Departamento de Bioquimica y Biologia Molecular y Celular, Universidad Zaragoza-Instituto de Investigación Sanitaria de Aragón (IISAragon), Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain.,Departamento de Bioquimica y Biologia Molecular y Celular, Universidad Zaragoza-Instituto de Investigación Sanitaria de Aragón (IISAragon), Zaragoza, Spain
| | - Silvia Meavilla
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital, Queen Square, London, UK
| | - Angels García-Cazorla
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain
| | - Placido Navas
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain.,Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - Iain Hargreaves
- Neurometabolic Unit, National Hospital, Queen Square, London, UK.,School of Pharmacy, Liverpool John Moores University, Liverpool, UK
| | - Rafael Artuch
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu, Barcelona, Spain. .,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III Spain, Madrid, Spain.
| |
Collapse
|
8
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population. Oncotarget 2017; 8:93349-93359. [PMID: 29212154 PMCID: PMC5706800 DOI: 10.18632/oncotarget.20967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
9
|
Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 2016; 48:1396-1406. [PMID: 27723756 DOI: 10.1038/ng.3695] [Citation(s) in RCA: 463] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr-/- mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10-8) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.
Collapse
|