1
|
Mammi A, Geroldi A, Patrone S, Gotta F, Origone P, Gaudio A, La Barbera A, Sanguineri F, Ponti C, Iacomino M, Traverso M, Ferlazzo E, Schenone A, Pascarella A, Marsico O, Mandich P, Bellone E. The neurological core features of the infantile-onset multisystem neurologic, endocrine, and pancreatic disease: A novel nonsense mutation in an Italian family. J Peripher Nerv Syst 2024; 29:279-285. [PMID: 38874107 DOI: 10.1111/jns.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
AIM Biallelic mutations in the PTRH2 gene have been associated with infantile multisystem neurological, endocrine, and pancreatic disease (IMNEPD), a rare autosomal recessive disorder of variable expressivity characterized by global developmental delay, intellectual disability or borderline IQ level, sensorineural hearing loss, ataxia, and pancreatic insufficiency. Various additional features may be included, such as peripheral neuropathy, facial dysmorphism, hypothyroidism, hepatic fibrosis, postnatal microcephaly, cerebellar atrophy, and epilepsy. Here, we report the first Italian family presenting only predominant neurological features. METHODS Extensive neurological and neurophysiological evaluations have been conducted on the two affected brothers and their healthy mother since 1996. The diagnosis of peripheral neuropathy of probable hereditary origin was confirmed through a sural nerve biopsy. Exome sequencing was performed after the analysis of major neuropathy-associated genes yielded negative results. RESULTS Whole-exome sequencing analysis identified the homozygous substitution c.256C>T (p.Gln86Ter) in the PTRH2 gene in the two siblings. According to American College of Medical Genetics and Genomics (ACMG) guidelines, the variant has been classified as pathogenic. At 48 years old, the proband's reevaluation confirmed a demyelinating sensorimotor polyneuropathy with bilateral sensorineural hearing loss that had been noted since he was 13. Additionally, drug-resistant epileptic seizures occurred when he was 32 years old. No hepatic or endocrinological signs developed. The younger affected brother, 47 years old, has an overlapping clinical presentation without epilepsy. INTERPRETATION Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants. We thereby hope to better define IMNEPD and facilitate the identification and diagnosis of this novel disease entity.
Collapse
Affiliation(s)
- Alessia Mammi
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Paola Origone
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Andrea La Barbera
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Francesca Sanguineri
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- IRCCS Istituto Giannina Gaslini, Medical Genetic Unit, Genoa, Italy
| | - Monica Traverso
- IRCCS Istituto Giannina Gaslini, Medical Genetic Unit, Genoa, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, UOC Neurology Clinic, Genoa, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Oreste Marsico
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Emilia Bellone
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Isa HM, Khalaf SD, Janahi S, Naser MM, Al Hamad N, Alhaddar H, Busehail M. A Novel PTRH2 Gene Mutation Causing Infantile-onset Multisystem Neurologic, Endocrine, and Pancreatic Disease in a Bahraini Patient. Oman Med J 2024; 39:e599. [PMID: 38510576 PMCID: PMC10951560 DOI: 10.5001/omj.2024.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 03/22/2024] Open
Abstract
Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) is a rare autosomal recessive multisystemic disease with a prevalence of < 1/1 000 000. The wide spectrum of symptoms and associated diseases makes the diagnosis of this disease particularly challenging. Here, we report a 12-year-old Bahraini male who presented with the core clinical features of IMNEPD including intellectual disability, global developmental delay, sensorineural hearing loss, endocrine dysfunction, and exocrine pancreatic insufficiency. The diagnosis was confirmed by genetic testing using whole exome sequencing. This is the first reported case of IMNEPD from Bahrain and was found to have a novel homozygous peptidyl-tRNA hydrolase 2 (PTRH2) gene mutation (NM_001015509.2: c.370del p.(Glu124Lysfs*4)). Moreover, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes of previously reported patients in comparison to our case.
Collapse
Affiliation(s)
- Hasan M. Isa
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Sara D. Khalaf
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
| | - Sara Janahi
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Mohamed M. Naser
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
| | - Noor Al Hamad
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Hasan Alhaddar
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
| | - Maryam Busehail
- Pediatric Department, Salmaniya Medical Complex, Manama, Bahrain
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
3
|
Zhu M, Metzen F, Hopkinson M, Betz J, Heilig J, Sodhi J, Imhof T, Niehoff A, Birk DE, Izu Y, Krüger M, Pitsillides AA, Altmüller J, van Osch GJ, Straub V, Schreiber G, Paulsson M, Koch M, Brachvogel B. Ablation of collagen XII disturbs joint extracellular matrix organization and causes patellar subluxation. iScience 2023; 26:107225. [PMID: 37485359 PMCID: PMC10362267 DOI: 10.1016/j.isci.2023.107225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.
Collapse
Affiliation(s)
- Mengjie Zhu
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fabian Metzen
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janina Betz
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jassi Sodhi
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David E. Birk
- College of Medicine, University of South Florida, Morsani, Tampa, FL, USA
| | - Yayoi Izu
- Department of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Mats Paulsson
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Sharkia R, Jain S, Mahajnah M, Habib C, Azem A, Al-Shareef W, Zalan A. PTRH2 Gene Variants: Recent Review of the Phenotypic Features and Their Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14051031. [PMID: 37239392 DOI: 10.3390/genes14051031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) is an evolutionarily highly conserved mitochondrial protein. The biallelic mutations in the PTRH2 gene have been suggested to cause a rare autosomal recessive disorder characterized by an infantile-onset multisystem neurologic endocrine and pancreatic disease (IMNEPD). Patients with IMNEPD present varying clinical manifestations, including global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, sensorineural hearing loss, and abnormalities of thyroid, pancreas, and liver. In the current study, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes in patients. Additionally, we reported on a new case with a previously documented mutation. A bioinformatics analysis of the various PTRH2 gene variants was also carried out from a structural perspective. It appears that the most common clinical characteristics among all patients include motor delay (92%), neuropathy (90%), distal weakness (86.4%), intellectual disability (84%), hearing impairment (80%), ataxia (79%), and deformity of head and face (~70%). The less common characteristics include hand deformity (64%), cerebellar atrophy/hypoplasia (47%), and pancreatic abnormality (35%), while the least common appear to be diabetes mellitus (~30%), liver abnormality (~22%), and hypothyroidism (16%). Three missense mutations were revealed in the PTRH2 gene, the most common one being Q85P, which was shared by four different Arab communities and was presented in our new case. Moreover, four different nonsense mutations in the PTRH2 gene were detected. It may be concluded that disease severity depends on the PTRH2 gene variant, as most of the clinical features are manifested by nonsense mutations, while only the common features are presented by missense mutations. A bioinformatics analysis of the various PTRH2 gene variants also suggested the mutations to be deleterious, as they seem to disrupt the structural confirmation of the enzyme, leading to loss of stability and functionality.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| | - Clair Habib
- Genetics Institute, Rambam Health Care Campus, Haifa 31096, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| |
Collapse
|
5
|
Lazzarin MC, Dos Santos JF, Quintana HT, Pidone FAM, de Oliveira F. Duchenne muscular dystrophy progression induced by downhill running is accompanied by increased endomysial fibrosis and oxidative damage DNA in muscle of mdx mice. J Mol Histol 2023; 54:41-54. [PMID: 36348131 DOI: 10.1007/s10735-022-10109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle necrosis. One of the major challenges for prescribing physical rehabilitation exercises for DMD patients is associated with the lack of a thorough knowledge of dystrophic muscle responsiveness to exercise. This study aims to understand the relationship between myogenic regulation, inflammation and oxidative stress parameters, and disease progression induced by downhill running in the skeletal muscle of an experimental model of DMD. Six-month-old C57BL/10 and C57BL/10-DMDmdx male mice were distributed into three groups: Control (C), mdx, and mdx + Exercise (mdx + Ex). Animals were trained in a downhill running protocol for seven weeks. The gastrocnemius muscle was subjected to histopathology, muscle regeneration (myoD and myogenin), inflammation (COX-2), oxidative stress (8-OHdG) immunohistochemistry markers, and gene expression (qPCR) of NF-kB and NADP(H)Oxidase 2 (NOX-2) analysis. In the mdx + Ex group, the gastrocnemius muscle showed a higher incidence of endomysial fibrosis and a lower myonecrosis percentage area. Immunohistochemical analysis revealed decreased myogenin immunoexpression in the mdx group, as well as accentuated immunoexpression of nuclear 8-OHdG in both mdx groups and increase in cytoplasmic 8-OHdG only in the mdx + Ex. COX-2 immunoexpression was related to areas of regeneration process and inflammatory infiltrate in the mdx group, while associated with areas of muscle fibrosis in the mdx + Ex. Moreover, the NF-kB gene expression was not influenced by exercise; however, a NAD(P)HOxidase 2 increase was observed. Oxidative stress and oxidative DNA damage play a significant role in the DMD phenotype progression induced by exercise, compromising cellular patterns resulting in increased endomysial fibrosis.
Collapse
Affiliation(s)
- Mariana Cruz Lazzarin
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.,Laboratory of Pathophysiology, Institute Butantan, São Paulo, SP, Brazil
| | - José Fontes Dos Santos
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia Andressa Mazzuco Pidone
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.
| |
Collapse
|
6
|
A novel PTRH2 missense mutation causing IMNEPD: a case report. Hum Genome Var 2021; 8:23. [PMID: 34112751 PMCID: PMC8192544 DOI: 10.1038/s41439-021-00147-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022] Open
Abstract
PTRH2 deficiency is associated with an extremely rare disease, infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We report the first Iranian patient with IMNEPD. We detected a pathogenic variant in the PTRH2 gene (NM_016077.5: c.68T > C, p.V23A). The proband has myopia, spastic diplegic cerebral palsy, urolithiasis, and a history of seizures.
Collapse
|
7
|
Diabetes mellitus in an adolescent girl with intellectual disability caused by novel single base pair duplication in the PTRH2 gene: Expanding the clinical spectrum of IMNEPD. Brain Dev 2021; 43:314-319. [PMID: 33092935 DOI: 10.1016/j.braindev.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) is an extremely rare autosomal recessive disorder with variable expressivity, caused by biallelic mutations in the PTRH2 gene. Core features are global developmental delay or isolated speech delay, intellectual disability, sensorineural hearing loss, ataxia, and pancreatic insufficiency (both exocrine and endocrine). Additional features may include postnatal microcephaly, peripheral neuropathy, facial dysmorphism, and cerebellar atrophy. In literature, there are only a few anecdotal case reports and none of the previous cases presented with diabetic ketoacidosis. METHODS We are reporting a 12-year old adolescent girl with mild intellectual disability who presented with fever, pain abdomen for 2 days, and fast breathing for one day. RESULTS Her random blood sugar was 472 mg/dl and arterial blood gas revealed high anion gap metabolic acidosis. Urine examination showed ketonuria. On further evaluation, she was found to have demyelinating sensorimotor polyneuropathy and sensorineural hearing loss. Neuroimaging and other ancillary investigations were normal. Whole exome sequencing revealed a novel homozygous single base pair duplication in exon 1 of the PTRH2 gene (c.127dupA, p.Ser43LysfsTer11), confirming the diagnosis of IMNEPD. CONCLUSIONS Apart from describing a novel single base pair duplication causing protein truncation in the PTRH2 gene for the first time, our case also expanded the clinical spectrum of IMNEPD, as this is the first case with seemingly pure neurodevelopmental phenotype, who later developed diabetes mellitus, without any exocrine pancreatic abnormality. IMNEPD should be considered in children or adolescents with global developmental delay or intellectual disability when they develop diabetes mellitus.
Collapse
|
8
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
9
|
Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis 2020; 11:308. [PMID: 32366831 PMCID: PMC7198528 DOI: 10.1038/s41419-020-2502-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Caspase-2, -9, and -3 are reported to control myoblast differentiation into myotubes. This had been previously explained by phosphatidylserine exposure on apoptotic myoblasts inducing differentiation in neighboring cells. Here we show for the first time that caspase-3 is activated in the myoblasts undergoing differentiation. Using RNAi, we also demonstrate that differentiation requires both cytochrome c and Apaf-1, and by using a new pharmacological approach, we show that apoptosome formation is required. We also show that Bid, whose cleavage links caspase-2 to the mitochondrial death pathway, was required for differentiation, and that the caspase cleavage product, tBid, was generated during differentiation. Taken together, these data suggest that myoblast differentiation requires caspase-2 activation of the mitochondrial death pathway, and that this occurs in the cells that differentiate. Our data also reveal a hierarchy of caspases in differentiation with caspase-2 upstream of apoptosome activation, and exerting a more profound control of differentiation, while caspases downstream of the apoptosome primarily control cell fusion.
Collapse
|
10
|
Genome-wide study to detect single nucleotide polymorphisms associated with visceral and subcutaneous fat deposition in Holstein dairy cows. Animal 2018; 13:487-494. [PMID: 29961431 DOI: 10.1017/s1751731118001519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive abdominal fat might be associated with more severe metabolic disorders in Holstein cows. Our hypothesis was that there are genetic differences between cows with low and high abdominal fat deposition and a normal cover of subcutaneous adipose tissue. The objective of this study was to assess the genetic basis for variation in visceral adiposity in US Holstein cows. The study included adult Holstein cows sampled from a slaughterhouse (Green Bay, WI, USA) during September 2016. Only animals with a body condition score between 2.75 and 3.25 were considered. The extent of omental fat at the level of the insertion of the lesser omentum over the pylorus area was assessed. A group of 100 Holstein cows with an omental fold <5 mm in thickness and minimum fat deposition throughout the entire omentum, and the second group of 100 cows with an omental fold ⩾20 mm in thickness and with a marked fat deposition observed throughout the entire omentum were sampled. A small piece of muscle from the neck was collected from each cow into a sterile container for DNA extraction. Samples were submitted to a commercial laboratory for interrogation of genome-wide genomic variation using the Illumina BovineHD Beadchip. Genome-Wide association analysis was performed to test potential associations between fat deposition and genomic variation. A univariate mixed linear model analysis was performed using genome-wide efficient mixed model association to identify single nucleotide polymorphisms (SNPs) significantly associated with variation in a visceral fat deposition. The chip heritability was 0.686 and the estimated additive genetic and residual variance components were 0.427 and 0.074, respectively. In total, 11 SNPs defining four quantitative trait locus (QTL) regions were found to be significantly associated with visceral fat deposition (P<0.00001). Among them, two of the QTL were detected with four and five significantly associated SNPs, respectively; whereas, the QTLs detected on BTA12 and BTA19 were each detected with only one significantly associated SNP. No enriched gene ontology terms were found within the gene networks harboring these genes when supplied to DAVID using either the Bos taurus or human gene ontology databases. We conclude that excessive omental fat in Holstein cows with similar body condition scores is not caused by a single Mendelian locus and that the trait appears to be at least moderately heritable; consequently, selection to reduce excessive omental fat is potentially possible, but would require the generation of predicted transmitting abilities from larger and random samples of Holstein cattle.
Collapse
|