1
|
Malik T, Sidisky JM, Jones S, Winters A, Hocking B, Rotay J, Huhulea EN, Moran S, Connors B, Babcock DT. Synaptic defects in adult drosophila motor neurons in a model of amyotrophic lateral sclerosis. Hum Mol Genet 2025:ddaf068. [PMID: 40327885 DOI: 10.1093/hmg/ddaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Like other neurodegenerative diseases, defects in synaptic integrity are among the earliest hallmarks of ALS. However, the specific impairments to synaptic integrity remain unclear. To better understand synaptic defects in ALS, we expressed either wild-type or mutant Fused in Sarcoma (FUS), an RNA binding protein that is often mis-localized in ALS, in adult motor neurons. Using optogenetic stimulation of the motor neurons innervating the Ventral Abdominal Muscles (VAMs), we found that expression of mutant FUS disrupted the functional integrity of these synapses. This functional deficit was followed by disruption of synaptic gross morphology, localization of pre- and post-synaptic proteins, and cytoskeleton integrity. We found similar synaptic defects using the motor neurons innervating the Dorsal Longitudinal Muscles (DLMs), where expression of mutant FUS resulted in a progressive loss of flight ability along with disruption of active zone distribution. Our findings uncover defects in synaptic function that precede changes in synaptic structure, suggesting that synaptic function is more sensitive to this ALS model. Highlighting the earliest synaptic defects in this disease model should help to identify strategies for preventing later stages of disease progression.
Collapse
Affiliation(s)
- Tulika Malik
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Jessica M Sidisky
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Sam Jones
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Alexander Winters
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Brandon Hocking
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Jocelyn Rotay
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Ellen N Huhulea
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Sara Moran
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Bali Connors
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Daniel T Babcock
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| |
Collapse
|
2
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. SCIENCE ADVANCES 2025; 11:eadr0262. [PMID: 39951523 PMCID: PMC11827636 DOI: 10.1126/sciadv.adr0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties coinnervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Tchitchkan
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Chen X, Perry S, Fan Z, Wang B, Loxterkamp E, Wang S, Hu J, Dickman D, Han C. Tissue-specific knockout in the Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. PLoS Genet 2024; 20:e1011438. [PMID: 39388480 PMCID: PMC11495600 DOI: 10.1371/journal.pgen.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions during development. However, this approach has not been successfully applied to most Drosophila tissues, including the Drosophila neuromuscular junction (NMJ). To expand tissue-specific CRISPR to this powerful model system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of CRISPR-TRiM by knocking out multiple genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. We used CRISPR-TRiM to discover an essential role for SNARE components in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to release extracellular vesicles at the NMJ. Thus, we have successfully developed an NMJ CRISPR mutagenesis approach which we used to reveal genes important for NMJ structural plasticity.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Ziwei Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
5
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612361. [PMID: 39314403 PMCID: PMC11419068 DOI: 10.1101/2024.09.10.612361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties co-innervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input-specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Kaikai He
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Sarah Perry
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Elizabeth Tchitchkan
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Yifu Han
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Xiling Li
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Dion Dickman
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| |
Collapse
|
6
|
Guangming G, Mei C, Qinfeng Y, Xiang G, Chenchen Z, Qingyuan S, Wei X, Junhua G. Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies. Front Cell Neurosci 2023; 17:1257347. [PMID: 38026694 PMCID: PMC10646337 DOI: 10.3389/fncel.2023.1257347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in Drosophila neurexin (dnrx) dnrx273, Drosophila neuroligin (dnlg) dnlg1 and dnlg4 mutants and dnrx83;dnlg3 and dnlg2;dnlg3 double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration.
Collapse
Affiliation(s)
- Gan Guangming
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chen Mei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Yu Qinfeng
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gao Xiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhang Chenchen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Qingyuan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Xie Wei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu, China
| | - Geng Junhua
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Southeast University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Chen X, Perry S, Wang B, Wang S, Hu J, Loxterkamp E, Dickman D, Han C. Tissue-specific knockout in Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559303. [PMID: 37808853 PMCID: PMC10557614 DOI: 10.1101/2023.09.25.559303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions in animal development. However, this approach has been successfully applied in only a small number of Drosophila tissues. The Drosophila motor nervous system is an excellent model system for studying the biology of neuromuscular junction (NMJ). To expand tissue-specific CRISPR to the Drosophila motor system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of this toolkit by knocking out known genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. Using these tools, we discovered an essential role for SNARE pathways in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating the retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to lease extracellular vesicles at the NMJ.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Dunn E, Steinert JR, Stone A, Sahota V, Williams RSB, Snowden S, Augustin H. Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis. Cells 2023; 12:2163. [PMID: 37681895 PMCID: PMC10486503 DOI: 10.3390/cells12172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.
Collapse
Affiliation(s)
- Ella Dunn
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Virender Sahota
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Hrvoje Augustin
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| |
Collapse
|
9
|
Han Y, Goel P, Chen J, Perry S, Tran N, Nishimura S, Sanjani M, Chien C, Dickman D. Excess glutamate release triggers subunit-specific homeostatic receptor scaling. Cell Rep 2023; 42:112775. [PMID: 37436892 PMCID: PMC10529671 DOI: 10.1016/j.celrep.2023.112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Ionotropic glutamate receptors (GluRs) are targets for modulation in Hebbian and homeostatic synaptic plasticity and are remodeled by development, experience, and disease. We have probed the impact of synaptic glutamate levels on the two postsynaptic GluR subtypes at the Drosophila neuromuscular junction, GluRA and GluRB. We first demonstrate that GluRA and GluRB compete to establish postsynaptic receptive fields, and that proper GluR abundance and composition can be orchestrated in the absence of any synaptic glutamate release. However, excess glutamate adaptively tunes postsynaptic GluR abundance, echoing GluR scaling observed in mammalian systems. Furthermore, when GluRA vs. GluRB competition is eliminated, GluRB becomes insensitive to glutamate modulation. In contrast, GluRA is now homeostatically regulated by excess glutamate to maintain stable miniature activity, where Ca2+ permeability through GluRA receptors is required. Thus, excess glutamate, GluR competition, and Ca2+ signaling collaborate to selectively target GluR subtypes for homeostatic regulation at postsynaptic compartments.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manisha Sanjani
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
He K, Han Y, Li X, Hernandez RX, Riboul DV, Feghhi T, Justs KA, Mahneva O, Perry S, Macleod GT, Dickman D. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons. J Neurosci 2023; 43:4598-4611. [PMID: 37221096 PMCID: PMC10286941 DOI: 10.1523/jneurosci.0046-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant "tonic" rate, while others fire in bursts, a "phasic" pattern. Synapses formed by tonic versus phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge toward illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At the Drosophila neuromuscular junction, most muscle fibers are coinnervated by two motor neurons: the tonic "MN-Ib" and phasic "MN-Is." Here, we used selective expression of a newly developed botulinum neurotoxin transgene to silence tonic or phasic motor neurons in Drosophila larvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+ imaging demonstrated ∼2-fold greater Ca2+ influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+ channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+ influx collaborate to differentially tune glutamate release at tonic versus phasic synaptic subtypes.SIGNIFICANCE STATEMENT "Tonic" and "phasic" neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how input-specific synaptic diversity is achieved, which could have implications for neurologic disorders that involve changes in synaptic function.
Collapse
Affiliation(s)
- Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Roberto X Hernandez
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
- International Max Planck Research School for Brain and Behavior, Jupiter, Florida 33458
| | - Danielle V Riboul
- Integrative Biology Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Touhid Feghhi
- Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
| | - Karlis A Justs
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olena Mahneva
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| | - Gregory T Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, Florida 33458
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
11
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Hung ST, Linares GR, Chang WH, Eoh Y, Krishnan G, Mendonca S, Hong S, Shi Y, Santana M, Kueth C, Macklin-Isquierdo S, Perry S, Duhaime S, Maios C, Chang J, Perez J, Couto A, Lai J, Li Y, Alworth SV, Hendricks E, Wang Y, Zlokovic BV, Dickman DK, Parker JA, Zarnescu DC, Gao FB, Ichida JK. PIKFYVE inhibition mitigates disease in models of diverse forms of ALS. Cell 2023; 186:786-802.e28. [PMID: 36754049 PMCID: PMC10062012 DOI: 10.1016/j.cell.2023.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.
Collapse
Affiliation(s)
- Shu-Ting Hung
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Gabriel R Linares
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | | | - Yunsun Eoh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Gopinath Krishnan
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Sarah Hong
- AcuraStem Incorporated, Monrovia, CA 91016, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Manuel Santana
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Chuol Kueth
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Duhaime
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Claudia Maios
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Jonathan Chang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Joscany Perez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander Couto
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | | | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Yaoming Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dion K Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - J Alex Parker
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Daniela C Zarnescu
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
13
|
Perry S, Han Y, Qiu C, Chien C, Goel P, Nishimura S, Sajnani M, Schmid A, Sigrist SJ, Dickman D. A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling. Nat Commun 2022; 13:7656. [PMID: 36496500 PMCID: PMC9741633 DOI: 10.1038/s41467-022-35417-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively enhances neurotransmitter release following diminished postsynaptic glutamate receptor (GluR) functionality to maintain synaptic strength. While much is known about PHP expression mechanisms, postsynaptic induction remains enigmatic. For over 20 years, diminished postsynaptic Ca2+ influx was hypothesized to reduce CaMKII activity and enable retrograde PHP signaling at the Drosophila neuromuscular junction. Here, we have interrogated inductive signaling and find that active CaMKII colocalizes with and requires the GluRIIA receptor subunit. Next, we generated Ca2+-impermeable GluRs to reveal that both CaMKII activity and PHP induction are Ca2+-insensitive. Rather, a GluRIIA C-tail domain is necessary and sufficient to recruit active CaMKII. Finally, chimeric receptors demonstrate that the GluRIIA tail constitutively occludes retrograde homeostatic signaling by stabilizing active CaMKII. Thus, the physical loss of the GluRIIA tail is sensed, rather than reduced Ca2+, to enable retrograde PHP signaling, highlighting a unique, Ca2+-independent control mechanism for CaMKII in gating homeostatic plasticity.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chengjie Qiu
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Manisha Sajnani
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Andreas Schmid
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Mushtaq Z, Aavula K, Lasser DA, Kieweg ID, Lion LM, Kins S, Pielage J. Madm/NRBP1 mediates synaptic maintenance and neurodegeneration-induced presynaptic homeostatic potentiation. Cell Rep 2022; 41:111710. [PMID: 36450258 DOI: 10.1016/j.celrep.2022.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
The precise regulation of synaptic connectivity and function is essential to maintain neuronal circuits. Here, we show that the Drosophila pseudo-kinase Madm/NRBP1 (Mlf-1-adapter-molecule/nuclear-receptor-binding protein 1) is required presynaptically to maintain synaptic stability and to coordinate synaptic growth and function. Presynaptic Madm mediates these functions by controlling cap-dependent translation via the target of rapamycin (TOR) effector 4E-BP/Thor (eukaryotic initiation factor 4E binding protein/Thor). Strikingly, at degenerating neuromuscular synapses, postsynaptic Madm induces a compensatory, transsynaptic signal that utilizes the presynaptic homeostatic potentiation (PHP) machinery to offset synaptic release deficits and to delay synaptic degeneration. Madm is not required for canonical PHP but induces a neurodegeneration-specific form of PHP and acts via the regulation of the cap-dependent translation regulators 4E-BP/Thor and S6-kinase. Consistently, postsynaptic induction of canonical PHP or TOR activation can compensate for postsynaptic Madm to alleviate functional and structural synaptic defects. Our results provide insights into the molecular mechanisms underlying neurodegeneration-induced PHP with potential neurotherapeutic applications.
Collapse
Affiliation(s)
- Zeeshan Mushtaq
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kumar Aavula
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Dario A Lasser
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ingrid D Kieweg
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lena M Lion
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
15
|
Ghaffari LT, Trotti D, Haeusler AR, Jensen BK. Breakdown of the central synapses in C9orf72-linked ALS/FTD. Front Mol Neurosci 2022; 15:1005112. [PMID: 36187344 PMCID: PMC9523884 DOI: 10.3389/fnmol.2022.1005112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease that leads to the death of motor and cortical neurons. The clinical manifestations of ALS are heterogenous, and efficacious treatments to significantly slow the progression of the disease are lacking. Cortical hyper-excitability is observed pre-symptomatically across disease-causative genetic variants, as well as in the early stages of sporadic ALS, and typically precedes motor neuron involvement and overt neurodegeneration. The causes of cortical hyper-excitability are not yet fully understood but is mainly agreed to be an early event. The identification of the nucleotide repeat expansion (GGGGCC)n in the C9ORF72 gene has provided evidence that ALS and another neurodegenerative disease, frontotemporal dementia (FTD), are part of a disease spectrum with common genetic origins. ALS and FTD are diseases in which synaptic dysfunction is reported throughout disease onset and stages of progression. It has become apparent that ALS/FTD-causative genes, such as C9ORF72, may have roles in maintaining the normal physiology of the synapse, as mutations in these genes often manifest in synaptic dysfunction. Here we review the dysfunctions of the central nervous system synapses associated with the nucleotide repeat expansion in C9ORF72 observed in patients, organismal, and cellular models of ALS and FTD.
Collapse
|
16
|
Han Y, Chien C, Goel P, He K, Pinales C, Buser C, Dickman D. Botulinum neurotoxin accurately separates tonic vs. phasic transmission and reveals heterosynaptic plasticity rules in Drosophila. eLife 2022; 11:e77924. [PMID: 35993544 PMCID: PMC9439677 DOI: 10.7554/elife.77924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Chun Chien
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Pragya Goel
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Kaikai He
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | | | | | - Dion Dickman
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
17
|
Kaliszewska A, Allison J, Col TT, Shaw C, Arias N. Elucidating the Role of Cerebellar Synaptic Dysfunction in C9orf72-ALS/FTD - a Systematic Review and Meta-Analysis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:681-714. [PMID: 34491551 PMCID: PMC9325807 DOI: 10.1007/s12311-021-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) with synaptic dysfunction identified as an early pathological hallmark. Although TDP-43 pathology and overt neurodegeneration are largely absent from the cerebellum, the pathological hallmarks of RNA foci and dipeptide repeat protein (DPR) inclusions are most abundant. Here, we present a systematic literature search in the databases of PubMed, Scopus, Embase, Web of Science and Science Direct up until March 5, 2021, which yielded 19,515 publications. Following the exclusion criteria, 72 articles were included having referred to C9orf72, synapses and the cerebellum. Meta-analyses were conducted on studies which reported experimental and control groups with means and standard deviations extracted from figures using the online tool PlotDigitizer. This revealed dendritic defects (P = 0.03), reduced C9orf72 in human patients (P = 0.005) and DPR-related neuronal loss (P = 0.0006) but no neuromuscular junction abnormalities (P = 0.29) or cerebellar neuronal loss (P = 0.23). Our results suggest that dendritic arborisation defects, synaptic gene dysregulation and altered synaptic neurotransmission may drive cerebellar synaptic dysfunction in C9-ALS/FTD. In this review, we discuss how the chronological appearance of the different pathological hallmarks alters synaptic integrity which may have profound implications for disease progression. We conclude that a reduction in C9orf72 protein levels combined with the accumulation of RNA foci and DPRs act synergistically to drive C9 synaptopathy in the cerebellum of C9-ALS/FTD patients.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Joseph Allison
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Tarik-Tarkan Col
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Christopher Shaw
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
- Centre for Brain Research, University of Auckland, 85 Grafton Road, Auckland, 1023, New Zealand
| | - Natalia Arias
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK.
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Plaza Feijoo s/n, 33003, Oviedo, Spain.
| |
Collapse
|
18
|
Baccino-Calace M, Schmidt K, Müller M. The E3 ligase Thin controls homeostatic plasticity through neurotransmitter release repression. eLife 2022; 11:71437. [PMID: 35796533 PMCID: PMC9299833 DOI: 10.7554/elife.71437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic proteins and synaptic transmission are under homeostatic control, but the relationship between these two processes remains enigmatic. Here, we systematically investigated the role of E3 ubiquitin ligases, key regulators of protein degradation-mediated proteostasis, in presynaptic homeostatic plasticity (PHP). An electrophysiology-based genetic screen of 157 E3 ligase-encoding genes at the Drosophila neuromuscular junction identified thin, an ortholog of human tripartite motif-containing 32 (TRIM32), a gene implicated in several neurological disorders, including autism spectrum disorder and schizophrenia. We demonstrate that thin functions presynaptically during rapid and sustained PHP. Presynaptic thin negatively regulates neurotransmitter release under baseline conditions by limiting the number of release-ready vesicles, largely independent of gross morphological defects. We provide genetic evidence that thin controls release through dysbindin, a schizophrenia-susceptibility gene required for PHP. Thin and Dysbindin localize in proximity within presynaptic boutons, and Thin degrades Dysbindin in vitro. Thus, the E3 ligase Thin links protein degradation-dependent proteostasis of Dysbindin to homeostatic regulation of neurotransmitter release.
Collapse
Affiliation(s)
| | - Katharina Schmidt
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
21
|
Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry 2022; 27:1300-1309. [PMID: 34799692 PMCID: PMC9095474 DOI: 10.1038/s41380-021-01384-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.
Collapse
Affiliation(s)
- Nadine Huber
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sonja Korhonen
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dorit Hoffmann
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Stina Leskelä
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannah Rostalski
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anne M. Remes
- grid.10858.340000 0001 0941 4873Unit of Clinical Neuroscience, Neurology, University of Oulu, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC Oulu, Oulu University Hospital, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland
| | - Paavo Honkakoski
- grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.10698.360000000122483208Department of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Eino Solje
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine—Neurology, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro Center, Neurology, Kuopio University Hospital, P.O. Box 100, KYS, FI-70029 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
22
|
Pasniceanu IS, Atwal MS, Souza CDS, Ferraiuolo L, Livesey MR. Emerging Mechanisms Underpinning Neurophysiological Impairments in C9ORF72 Repeat Expansion-Mediated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Front Cell Neurosci 2021; 15:784833. [PMID: 34975412 PMCID: PMC8715728 DOI: 10.3389/fncel.2021.784833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Matthew R. Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Nair AG, Muttathukunnel P, Müller M. Distinct molecular pathways govern presynaptic homeostatic plasticity. Cell Rep 2021; 37:110105. [PMID: 34910905 PMCID: PMC8692748 DOI: 10.1016/j.celrep.2021.110105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through neurotransmitter release potentiation. PHP is thought to be triggered by impaired receptor function and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly reduce synaptic transmission result in different responses at the Drosophila neuromuscular junction. While receptor inhibition by the glutamate receptor (GluR) antagonist γ-D-glutamylglycine (γDGG) is not compensated by PHP, the GluR inhibitors Philanthotoxin-433 (PhTx) and Gyki-53655 (Gyki) induce compensatory PHP. Intriguingly, PHP triggered by PhTx and Gyki involve separable signaling pathways, including inhibition of distinct GluR subtypes, differential modulation of the active-zone scaffold Bruchpilot, and short-term plasticity. Moreover, while PHP upon Gyki treatment does not require genes promoting PhTx-induced PHP, it involves presynaptic protein kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.
Collapse
Affiliation(s)
- Anu G Nair
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Paola Muttathukunnel
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Taylor HBC, Jeans AF. Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease. Front Cell Neurosci 2021; 15:782768. [PMID: 34955753 PMCID: PMC8702499 DOI: 10.3389/fncel.2021.782768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) regulates synaptic strength both pre- and postsynaptically to ensure stability and efficient information transfer in neural networks. A number of neurological diseases have been associated with deficits in HSP, particularly diseases characterised by episodic network instability such as migraine and epilepsy. Recently, it has become apparent that HSP also plays a role in many neurodegenerative diseases. In this mini review, we present an overview of the evidence linking HSP to each of the major neurodegenerative diseases, finding that HSP changes in each disease appear to belong to one of three broad functional categories: (1) deficits in HSP at degenerating synapses that contribute to pathogenesis or progression; (2) HSP induced in a heterosynaptic or cell non-autonomous manner to support the function of networks of which the degenerating synapses or cells are part; and (3) induction of HSP within the degenerating population of synapses to preserve function and to resist the impact of synapse loss. Understanding the varied manifestations of HSP in neurodegeneration will not only aid understanding mechanisms of disease but could also inspire much-needed novel approaches to therapy.
Collapse
Affiliation(s)
| | - Alexander F. Jeans
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
26
|
Santoso JW, Li X, Gupta D, Suh GC, Hendricks E, Lin S, Perry S, Ichida JK, Dickman D, McCain ML. Engineering skeletal muscle tissues with advanced maturity improves synapse formation with human induced pluripotent stem cell-derived motor neurons. APL Bioeng 2021; 5:036101. [PMID: 34286174 PMCID: PMC8282350 DOI: 10.1063/5.0054984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
To develop effective cures for neuromuscular diseases, human-relevant in vitro models of neuromuscular tissues are critically needed to probe disease mechanisms on a cellular and molecular level. However, previous attempts to co-culture motor neurons and skeletal muscle have resulted in relatively immature neuromuscular junctions (NMJs). In this study, NMJs formed by human induced pluripotent stem cell (hiPSC)-derived motor neurons were improved by optimizing the maturity of the co-cultured muscle tissue. First, muscle tissues engineered from the C2C12 mouse myoblast cell line, cryopreserved primary human myoblasts, and freshly isolated primary chick myoblasts on micromolded gelatin hydrogels were compared. After three weeks, only chick muscle tissues remained stably adhered to hydrogels and exhibited progressive increases in myogenic index and stress generation, approaching values generated by native muscle tissue. After three weeks of co-culture with hiPSC-derived motor neurons, engineered chick muscle tissues formed NMJs with increasing co-localization of pre- and postsynaptic markers as well as increased frequency and magnitude of synaptic activity, surpassing structural and functional maturity of previous in vitro models. Engineered chick muscle tissues also demonstrated increased expression of genes related to sarcomere maturation and innervation over time, revealing new insights into the molecular pathways that likely contribute to enhanced NMJ formation. These approaches for engineering advanced neuromuscular tissues with relatively mature NMJs and interrogating their structure and function have many applications in neuromuscular disease modeling and drug development.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Xiling Li
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Gio C. Suh
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Shaoyu Lin
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Sarah Perry
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Dion Dickman
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Megan L. McCain
- Author to whom correspondence should be addressed:. Tel: +1 2138210791. URL:https://livingsystemsengineering.usc.edu
| |
Collapse
|
27
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
28
|
Goel P, Dickman D. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cell Mol Life Sci 2021; 78:3159-3179. [PMID: 33449150 PMCID: PMC8044042 DOI: 10.1007/s00018-020-03732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
29
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
30
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
31
|
The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proc Natl Acad Sci U S A 2020; 117:25830-25839. [PMID: 32973097 DOI: 10.1073/pnas.1915464117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Presynaptic glutamate receptors (GluRs) modulate neurotransmitter release and are physiological targets for regulation during various forms of plasticity. Although much is known about the auxiliary subunits associated with postsynaptic GluRs, far less is understood about presynaptic auxiliary GluR subunits and their functions. At the Drosophila neuromuscular junction, a presynaptic GluR, DKaiR1D, localizes near active zones and operates as an autoreceptor to tune baseline transmission and enhance presynaptic neurotransmitter release in response to diminished postsynaptic GluR functionality, a process referred to as presynaptic homeostatic potentiation (PHP). Here, we identify an auxiliary subunit that collaborates with DKaiR1D to promote these synaptic functions. This subunit, dSol-1, is the homolog of the Caenorhabditis elegans CUB (Complement C1r/C1s, Uegf, Bmp1) domain protein Sol-1. We find that dSol-1 functions in neurons to facilitate baseline neurotransmission and to enable PHP expression, properties shared with DKaiR1D Intriguingly, presynaptic overexpression of dSol-1 is sufficient to enhance neurotransmitter release through a DKaiR1D-dependent mechanism. Furthermore, dSol-1 is necessary to rapidly increase the abundance of DKaiR1D receptors near active zones during homeostatic signaling. Together with recent work showing the CUB domain protein Neto2 is necessary for the homeostatic modulation of postsynaptic GluRs in mammals, our data demonstrate that dSol-1 is required for the homeostatic regulation of presynaptic GluRs. Thus, we propose that CUB domain proteins are fundamental homeostatic modulators of GluRs on both sides of the synapse.
Collapse
|
32
|
Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD. Proc Natl Acad Sci U S A 2020; 117:25104-25115. [PMID: 32958650 DOI: 10.1073/pnas.2005506117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maintaining the fidelity of nascent peptide chain (NP) synthesis is essential for proteome integrity and cellular health. Ribosome-associated quality control (RQC) serves to resolve stalled translation, during which untemplated Ala/Thr residues are added C terminally to stalled peptide, as shown during C-terminal Ala and Thr addition (CAT-tailing) in yeast. The mechanism and biological effects of CAT-tailing-like activity in metazoans remain unclear. Here we show that CAT-tailing-like modification of poly(GR), a dipeptide repeat derived from amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD)-associated GGGGCC (G4C2) repeat expansion in C9ORF72, contributes to disease. We find that poly(GR) can act as a mitochondria-targeting signal, causing some poly(GR) to be cotranslationally imported into mitochondria. However, poly(GR) translation on mitochondrial surface is frequently stalled, triggering RQC and CAT-tailing-like C-terminal extension (CTE). CTE promotes poly(GR) stabilization, aggregation, and toxicity. Our genetic studies in Drosophila uncovered an important role of the mitochondrial protease YME1L in clearing poly(GR), revealing mitochondria as major sites of poly(GR) metabolism. Moreover, the mitochondria-associated noncanonical Notch signaling pathway impinges on the RQC machinery to restrain poly(GR) accumulation, at least in part through the AKT/VCP axis. The conserved actions of YME1L and noncanonical Notch signaling in animal models and patient cells support their fundamental involvement in ALS/FTD.
Collapse
|
33
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Goel P, Nishimura S, Chetlapalli K, Li X, Chen C, Dickman D. Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments. Front Cell Neurosci 2020; 14:196. [PMID: 32676010 PMCID: PMC7333441 DOI: 10.3389/fncel.2020.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the other. However, the expression mechanisms that achieve this exquisite target-specific homeostatic control remain enigmatic. Here, we identify the distinct target-specific homeostatic expression mechanisms. On the hypo-innervated target, an increase in postsynaptic glutamate receptor (GluR) abundance is sufficient to compensate for reduced innervation, without any apparent presynaptic adaptations. In contrast, a target-specific reduction in presynaptic neurotransmitter release probability is reflected by a decrease in active zone components restricted to terminals of hyper-innervated targets. Finally, loss of postsynaptic GluRs on one target induces a compartmentalized, homeostatic enhancement of presynaptic neurotransmitter release called presynaptic homeostatic potentiation (PHP) that can be precisely balanced with the adaptations required for both hypo- and hyper-innervation to maintain stable synaptic strength. Thus, distinct anterograde and retrograde signaling systems operate at pre- and post-synaptic compartments to enable target-specific, homeostatic control of neurotransmission.
Collapse
|
35
|
Perry S, Goel P, Tran NL, Pinales C, Buser C, Miller DL, Ganetzky B, Dickman D. Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development 2020; 147:dev.186312. [PMID: 32345746 DOI: 10.1242/dev.186312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy L Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | - Daniel L Miller
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD 20824, USA
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Presynaptic Homeostasis Opposes Disease Progression in Mouse Models of ALS-Like Degeneration: Evidence for Homeostatic Neuroprotection. Neuron 2020; 107:95-111.e6. [PMID: 32380032 DOI: 10.1016/j.neuron.2020.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.
Collapse
|
37
|
Jantrapirom S, Enomoto Y, Karinchai J, Yamaguchi M, Yoshida H, Fukusaki E, Shimma S, Yamaguchi M. The depletion of ubiquilin in Drosophila melanogaster disturbs neurochemical regulation to drive activity and behavioral deficits. Sci Rep 2020; 10:5689. [PMID: 32231214 PMCID: PMC7105486 DOI: 10.1038/s41598-020-62520-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster is a useful and highly tractable model organism for understanding the molecular mechanisms of human diseases. We previously characterized a new dUbqn knockdown model that induces learning-memory and locomotive deficits mediated by impaired proteostasis. Although proteinopathies are the main causes of neurodegenerative diseases, limited information is currently available on the relationship between proteostasis and neurodegenerative-related behavioral perturbations, such as locomotion, wakefulness, and sexual activities. Thus, the present study aimed to elucidate the mechanisms by which dUbqn depletion which is known to cause proteinopathies, affects neurodegenerative-related behavioral perturbations. Pan-neuronal dUbqn-depleted flies showed significantly reduced evening activity along with altered pre- and postsynaptic structural NMJ's proteins by attenuating signals of Bruchpilot puncta and GluRIIA clustering. In addition, the neurochemical profiles of GABA, glutamate, dopamine, and serotonin were disturbed and these changes also affected courtship behaviors in dUbqn-depleted flies. Collectively, these results extend our understanding on how dUbqn depletion affects neurochemical regulation to drive behavioral disturbances that are generally found in the early stage of neurodegenerative diseases. Moreover, the present study may contribute a novel finding to the design of new agents that prevent disease progression or even treat diseases related to neurodegeneration.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Yosuke Enomoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mizuki Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan.
| |
Collapse
|
38
|
Guarino SR, Canciani A, Forneris F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front Mol Biosci 2020; 6:156. [PMID: 31998752 PMCID: PMC6966886 DOI: 10.3389/fmolb.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Synapse formation is a very elaborate process dependent upon accurate coordination of pre and post-synaptic specialization, requiring multiple steps and a variety of receptors and signaling molecules. Due to its relative structural simplicity and the ease in manipulation and observation, the neuromuscular synapse or neuromuscular junction (NMJ)-the connection between motor neurons and skeletal muscle-represents the archetype junction system for studying synapse formation and conservation. This junction is essential for survival, as it controls our ability to move and breath. NMJ formation requires coordinated interactions between motor neurons and muscle fibers, which ultimately result in the formation of a highly specialized post-synaptic architecture and a highly differentiated nerve terminal. Furthermore, to ensure a fast and reliable synaptic transmission following neurotransmitter release, ligand-gated channels (acetylcholine receptors, AChRs) are clustered on the post-synaptic muscle cell at high concentrations in sites opposite the presynaptic active zone, supporting a direct role for nerves in the organization of the post-synaptic membrane architecture. This organized clustering process, essential for NMJ formation and for life, relies on key signaling molecules and receptors and is regulated by soluble extracellular molecules localized within the synaptic cleft. Notably, several mutations as well as auto-antibodies against components of these signaling complexes have been related to neuromuscular disorders. The recent years have witnessed strong progress in the understanding of molecular identities, architectures, and functions of NMJ macromolecules. Among these, prominent roles have been proposed for neural variants of the proteoglycan agrin, its receptor at NMJs composed of the lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific kinase (MuSK), as well as the regulatory soluble synapse-specific protease Neurotrypsin. In this review we summarize the current state of the art regarding molecular structures and (agrin-dependent) canonical, as well as (agrin-independent) non-canonical, MuSK signaling mechanisms that underscore the formation of neuromuscular junctions, with the aim of providing a broad perspective to further stimulate molecular, cellular and tissue biology investigations on this fundamental intercellular contact.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Li X, Goel P, Wondolowski J, Paluch J, Dickman D. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release. Cell Rep 2019; 23:1716-1727. [PMID: 29742428 PMCID: PMC5973541 DOI: 10.1016/j.celrep.2018.03.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/24/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of pre-synaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeo-static depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment.
Collapse
Affiliation(s)
- Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA; USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA; USC Graduate Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Joyce Wondolowski
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Jeremy Paluch
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA.
| |
Collapse
|
40
|
Kikuma K, Li X, Perry S, Li Q, Goel P, Chen C, Kim D, Stavropoulos N, Dickman D. Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nat Commun 2019; 10:2998. [PMID: 31278365 PMCID: PMC6611771 DOI: 10.1038/s41467-019-10992-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
At the Drosophila neuromuscular junction, inhibition of postsynaptic glutamate receptors activates retrograde signaling that precisely increases presynaptic neurotransmitter release to restore baseline synaptic strength. However, the nature of the underlying postsynaptic induction process remains enigmatic. Here, we design a forward genetic screen to discover factors in the postsynaptic compartment necessary to generate retrograde homeostatic signaling. This approach identified insomniac (inc), a putative adaptor for the Cullin-3 (Cul3) ubiquitin ligase complex, which together with Cul3 is essential for normal sleep regulation. Interestingly, we find that Inc and Cul3 rapidly accumulate at postsynaptic compartments following acute receptor inhibition and are required for a local increase in mono-ubiquitination. Finally, we show that Peflin, a Ca2+-regulated Cul3 co-adaptor, is necessary for homeostatic communication, suggesting a relationship between Ca2+ signaling and control of Cul3/Inc activity in the postsynaptic compartment. Our study suggests that Cul3/Inc-dependent mono-ubiquitination, compartmentalized at postsynaptic densities, gates retrograde signaling and provides an intriguing molecular link between the control of sleep and homeostatic plasticity at synapses. The authors use a forward genetic screen to discover postsynaptic factors required for homeostatic synaptic plasticity at the Drosophila neuromuscular junction. They identify insomniac and the ubiquitin ligase Cul3, genes involved in sleep regulation, to be necessary for retrograde homeostatic signalling at this synapse.
Collapse
Affiliation(s)
- Koto Kikuma
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Catherine Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel Kim
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
41
|
Gulino R, Vicario N, Giunta MAS, Spoto G, Calabrese G, Vecchio M, Gulisano M, Leanza G, Parenti R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int J Mol Sci 2019; 20:ijms20061500. [PMID: 30917493 PMCID: PMC6471664 DOI: 10.3390/ijms20061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Collapse
Affiliation(s)
- Rosario Gulino
- Laboratory of Neurophysiology, Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Nunzio Vicario
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Maria A S Giunta
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Graziana Spoto
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Giovanna Calabrese
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele" and Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.
| | - Massimo Gulisano
- Laboratory of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Giampiero Leanza
- Laboratory of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Rosalba Parenti
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| |
Collapse
|
42
|
Goel P, Dufour Bergeron D, Böhme MA, Nunnelly L, Lehmann M, Buser C, Walter AM, Sigrist SJ, Dickman D. Homeostatic scaling of active zone scaffolds maintains global synaptic strength. J Cell Biol 2019; 218:1706-1724. [PMID: 30914419 PMCID: PMC6504899 DOI: 10.1083/jcb.201807165] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/14/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Synaptic terminals grow and retract throughout life, yet synaptic strength is maintained within stable physiological ranges. To study this process, we investigated Drosophila endophilin (endo) mutants. Although active zone (AZ) number is doubled in endo mutants, a compensatory reduction in their size homeostatically adjusts global neurotransmitter output to maintain synaptic strength. We find an inverse adaptation in rab3 mutants. Additional analyses using confocal, STED, and electron microscopy reveal a stoichiometric tuning of AZ scaffolds and nanoarchitecture. Axonal transport of synaptic cargo via the lysosomal kinesin adapter Arl8 regulates AZ abundance to modulate global synaptic output and sustain the homeostatic potentiation of neurotransmission. Finally, we find that this AZ scaling can interface with two independent homeostats, depression and potentiation, to remodel AZ structure and function, demonstrating a robust balancing of separate homeostatic adaptations. Thus, AZs are pliable substrates with elastic and modular nanostructures that can be dynamically sculpted to stabilize and tune both local and global synaptic strength.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | | | - Mathias A Böhme
- Neurocure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Luke Nunnelly
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Neurocure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA
| |
Collapse
|
43
|
A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength. J Neurosci 2019; 39:4051-4065. [PMID: 30902873 DOI: 10.1523/jneurosci.2601-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023] Open
Abstract
Synapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains stable throughout life, implying that adaptive countermeasures exist that maintain neurotransmission within proper physiological ranges. Aberrant synaptic structure and function have been associated with a variety of neural diseases, including Fragile X syndrome, autism, and intellectual disability. We have screened 300 mutants in Drosophila larvae of both sexes for defects in synaptic growth at the neuromuscular junction, identifying 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed that synaptic strength was unchanged in all but one of these mutants compared with WT. We used a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength despite major disparities in synaptic growth. These include compensatory changes in (1) postsynaptic neurotransmitter receptor abundance, (2) presynaptic morphology, and (3) active zone structure. Together, this characterization identifies new mutants with defects in synaptic growth and the adaptive strategies used by synapses to homeostatically stabilize neurotransmission in response.SIGNIFICANCE STATEMENT This study reveals compensatory mechanisms used by synapses to ensure stable functionality during severe alterations in synaptic growth using the neuromuscular junction of Drosophila melanogaster as a model system. Through a forward genetic screen, we identify mutants that exhibit dramatic undergrown or overgrown synapses yet express stable levels of synaptic strength, with three specific compensatory mechanisms discovered. Thus, this study reveals novel insights into the adaptive strategies that constrain neurotransmission within narrow physiological ranges while allowing considerable flexibility in overall synapse number. More broadly, these findings provide insights into how stable synaptic function may be maintained in the nervous system during periods of intensive synaptic growth, pruning, and remodeling.
Collapse
|
44
|
Levels of Par-1 kinase determine the localization of Bruchpilot at the Drosophila neuromuscular junction synapses. Sci Rep 2018; 8:16099. [PMID: 30382129 PMCID: PMC6208417 DOI: 10.1038/s41598-018-34250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Functional synaptic networks are compromised in many neurodevelopmental and neurodegenerative diseases. While the mechanisms of axonal transport and localization of synaptic vesicles and mitochondria are relatively well studied, little is known about the mechanisms that regulate the localization of proteins that localize to active zones. Recent finding suggests that mechanisms involved in transporting proteins destined to active zones are distinct from those that transport synaptic vesicles or mitochondria. Here we report that localization of BRP-an essential active zone scaffolding protein in Drosophila, depends on the precise balance of neuronal Par-1 kinase. Disruption of Par-1 levels leads to excess accumulation of BRP in axons at the expense of BRP at active zones. Temporal analyses demonstrate that accumulation of BRP within axons precedes the loss of synaptic function and its depletion from the active zones. Mechanistically, we find that Par-1 co-localizes with BRP and is present in the same molecular complex, raising the possibility of a novel mechanism for selective localization of BRP-like active zone scaffolding proteins. Taken together, these data suggest an intriguing possibility that mislocalization of active zone proteins like BRP might be one of the earliest signs of synapse perturbation and perhaps, synaptic networks that precede many neurological disorders.
Collapse
|
45
|
C9orf72 Dipeptide Repeats Cause Selective Neurodegeneration and Cell-Autonomous Excitotoxicity in Drosophila Glutamatergic Neurons. J Neurosci 2018; 38:7741-7752. [PMID: 30037833 DOI: 10.1523/jneurosci.0908-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
The arginine-rich dipeptide repeats (DPRs) are highly toxic products from the C9orf72 repeat expansion mutations, which are the most common causes of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the effects of DPRs in the synaptic regulation and excitotoxicity remain elusive, and how they contribute to the development of FTD is primarily unknown. By expressing DPRs with different toxicity strength in various neuronal populations in a Drosophila model, we unexpectedly found that Glycine-Arginine/Proline-Arginine (GR/PR) with 36 repeats could lead to neurodegenerative phenotypes only when they were expressed in glutamatergic neurons, including motor neurons. We detected increased extracellular glutamate and intracellular calcium levels in GR/PR-expressing larval ventral nerve cord and/or adult brain, accompanied by significant increase of synaptic boutons and active zones in larval neuromuscular junctions. Inhibiting the vesicular glutamate transporter expression or blocking the NMDA receptor in presynaptic glutamatergic motor neurons could effectively rescue the motor deficits and shortened life span caused by poly GR/PR, thus indicating a cell-autonomous excitotoxicity mechanism. Therefore, our results have revealed a novel mode of synaptic regulation by arginine-rich C9 DPRs expressed at more physiologically relevant toxicity levels and provided a mechanism that could contribute to the development of C9-related ALS and FTD.SIGNIFICANCE STATEMENT C9orf72 dipeptide repeats (DPRs) are key toxic species causing ALS/FTD, but their roles in synaptic regulation and excitotoxicity are unclear. Using C9orf72 DPRs with various toxicity strength, we have found that the arginine-rich DPRs cause selective degeneration in Drosophila glutamatergic neurons and revealed an NMDA receptor-dependent cell-autonomous excitotoxicity mechanism. Therefore, this study has advanced our understanding of C9orf72 DPR functions in synaptic regulation and excitotoxicity and provided a new mechanism that could contribute to the development of C9-related ALS and FTD.
Collapse
|
46
|
Goel P, Li X, Dickman D. Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy. Cell Rep 2018; 21:2339-2347. [PMID: 29186673 DOI: 10.1016/j.celrep.2017.10.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde signaling systems are fundamental modes of communication synapses utilize to dynamically and adaptively modulate activity. However, the inductive mechanisms that gate retrograde communication in the postsynaptic compartment remain enigmatic. We have investigated retrograde signaling at the Drosophila neuromuscular junction, where three seemingly disparate perturbations to the postsynaptic cell trigger a similar enhancement in presynaptic neurotransmitter release. We show that the same presynaptic genetic machinery and enhancements in active zone structure are utilized by each inductive pathway. However, all three induction mechanisms differ in temporal, translational, and CamKII activity requirements to initiate retrograde signaling in the postsynaptic cell. Intriguingly, pharmacological blockade of postsynaptic glutamate receptors, and not calcium influx through these receptors, is necessary and sufficient to induce rapid retrograde homeostatic signaling through CamKII. Thus, three distinct induction mechanisms converge on the same retrograde signaling system to drive the homeostatic strengthening of presynaptic neurotransmitter release.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA; Graduate Program in Molecular Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
47
|
Li X, Goel P, Chen C, Angajala V, Chen X, Dickman DK. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. eLife 2018; 7:34338. [PMID: 29620520 PMCID: PMC5927770 DOI: 10.7554/elife.34338] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/04/2018] [Indexed: 01/23/2023] Open
Abstract
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. Everything we think and do is the result of communication between neurons. This communication takes place at junctions called synapses. When two nerve cells or neurons communicate at a synapse, the output terminal of the first cell releases a chemical called a neurotransmitter. This binds to receiver proteins, or receptors, on the second cell. When this communication is interrupted, synapses can adapt to maintain a stable dialogue between them. This can occur in two ways. Either the first neuron starts to release more neurotransmitter from its output terminal, or the second neuron produces extra receptors with which to detect the neurotransmitter. But how specific are these changes? The brain contains far more synapses than neurons because each neuron can form synapses with many other cells. Can a neuron adjust how much of the neurotransmitter it releases at some of its synapses while leaving the others unchanged? Li et al. have now addressed this question by studying a special type of synapse that forms between neurons and muscles, known as a neuromuscular junction. At one particular neuromuscular junction in fruit flies, a single neuron splits into two output terminals, each of which forms a synapse with a different muscle. Li et al. show that when the number of neurotransmitter receptors in one of the muscles is artificially reduced, the associated output terminal compensates by increasing its neurotransmitter release. By contrast, the other output terminal remains unaffected. This suggests that a neuron can induce remarkably specific changes in a subset of its synapses. This discovery paves the way towards identifying the smallest possible unit of change that can occur in the neurons’ ability to communicate. This unit may in turn be the smallest change that can support learning. Such knowledge will help us understand how the nervous system processes and stabilizes information transfer, both in health and after injury or disease.
Collapse
Affiliation(s)
- Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, United States.,Neuroscience Graduate Program, University of Southern California, California, United States
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, United States.,Graduate Program in Molecular and Computational Biology, University of Southern California, California, United States
| | - Catherine Chen
- Department of Neurobiology, University of Southern California, Los Angeles, United States
| | | | - Xun Chen
- Neuroscience Graduate Program, University of Southern California, California, United States
| | | |
Collapse
|
48
|
Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res 2018; 1693:98-108. [PMID: 29453960 DOI: 10.1016/j.brainres.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration of upper and lower motor neurons, resulting in fatal paralysis due to denervation of the muscle. Due to genetic, pathological and symptomatic overlap, ALS is now considered a spectrum disease together with frontotemporal dementia (FTD), the second most common cause of dementia in individuals under the age of 65. Interestingly, in both diseases, there is a large prevalence of RNA binding proteins (RBPs) that are mutated and considered disease-causing, or whose dysfunction contribute to disease pathogenesis. The most common shared genetic mutation in ALS/FTD is a hexanucleuotide repeat expansion within intron 1 of C9ORF72 (C9). Three potentially overlapping, putative toxic mechanisms have been proposed: loss of function due to haploinsufficient expression of the C9ORF72 mRNA, gain of function of the repeat RNA aggregates, or RNA foci, and repeat-associated non-ATG-initiated translation (RAN) of the repeat RNA into toxic dipeptide repeats (DPRs). Regardless of the causative mechanism, disease symptoms are ultimately caused by a failure of neurotransmission in three regions: the brain, the spinal cord, and the neuromuscular junction. Here, we review C9 ALS/FTD-associated synaptic dysfunction and aberrant neuronal excitability in these three key regions, focusing on changes in morphology and synapse formation, excitability, and excitotoxicity in patients, animal models, and in vitro models. We compare these deficits to those seen in other forms of ALS and FTD in search of shared pathways, and discuss the potential targeting of synaptic dysfunctions for therapeutic intervention in ALS and FTD patients.
Collapse
Affiliation(s)
- Alexander Starr
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Rita Sattler
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
49
|
Chen X, Dickman D. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genet 2017; 13:e1007117. [PMID: 29194454 PMCID: PMC5728580 DOI: 10.1371/journal.pgen.1007117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, transcriptional expression alone does not necessarily report gene translation, the process of ultimate importance in understanding cellular function. Ribosome profiling is a powerful approach to quantify the number of ribosomes associated with each mRNA to determine rates of gene translation. However, ribosome profiling requires large quantities of starting material, limiting progress in developing tissue-specific approaches. Here, we have developed the first tissue-specific ribosome profiling system in Drosophila to reveal genome-wide changes in translation. We first demonstrate successful ribosome profiling from muscle cells that exhibit superior resolution compared to other translational profiling methods. We then use transcriptional and ribosome profiling to define whether transcriptional or translational mechanisms are necessary for synaptic signaling at the neuromuscular junction. Finally, we utilize ribosome profiling to reveal adaptive changes in cellular translation following cellular stress to muscle tissue. Together, this now enables the power of Drosophila genetics to be leveraged with ribosome profiling in specific tissues.
Collapse
Affiliation(s)
- Xun Chen
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|