1
|
Shen L, Liu S, Hu F, Zhang Z, Li J, Lai Z, Zheng L, Yao Y. Electrophysiological Characteristics and Ablation Outcomes in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia. J Am Heart Assoc 2023; 12:e031768. [PMID: 38063176 PMCID: PMC10863755 DOI: 10.1161/jaha.123.031768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Catheter ablation of premature ventricular contractions (PVCs) that trigger polymorphic ventricular tachycardia (PVT) or ventricular fibrillation has been reported as a novel therapy to reduce the syncope events in patients with catecholaminergic PVT, whereas the long-term ablation outcome and its value in improving exercise-induced ventricular arrhythmias remain unclear. METHODS AND RESULTS Fourteen consecutive selected patients with catecholaminergic PVT (mean±SD age, 16±6 years; 43% male patients) treated with maximum β-blockers with no possibility of adding flecainide were prospectively enrolled for catheter ablation. The primary end point was syncope recurrence, and the secondary end point was the reduction of the ventricular arrhythmia score during exercise testing. Twenty-six PVT/ventricular fibrillation-triggering PVCs were identified for ablation. The trigger beats arose from the left ventricle in 50% of the cases and from both ventricles in 36% of the cases. Purkinje potentials were observed at 27% of the targets. After a mean follow-up of 49 months after ablation, 8 (57%) patients were free from syncope recurrence. Ablation of trigger beat significantly reduced the syncope frequency (mean±SD, 4.3±1.6 to 0.5±0.8 events per year; P<0.001) and improved the ventricular arrhythmia scores at the 3-month (5 [range, 3-6] to 1.5 [range, 0-5]; P=0.002) and 12-month (5 [range, 3-6] to 2 [range, 0-5]; P=0.014) follow-ups. The induction of nontriggering PVCs postablation was closely associated with syncope recurrence (hazard ratio, 6.8 [95% CI, 1.3-35.5]; P=0.026). CONCLUSIONS Catheter ablation of PVT/ventricular fibrillation-triggering PVCs in patients with catecholaminergic PVT who cannot receive flecainide treatment seems to be a safe and feasible adjunctive treatment that may reduce the syncope burden and improve exercise-related ventricular arrhythmias. Induction of nontriggering PVCs after ablation is associated with a higher risk of syncope recurrence.
Collapse
Affiliation(s)
- Lishui Shen
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Cardiology, Shanghai Tenth People’s HospitalTongji UniversityShanghaiChina
| | - Shangyu Liu
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of CardiologyThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Feng Hu
- Department of Cardiology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Zhenhao Zhang
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiakun Li
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zihao Lai
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lihui Zheng
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Yao
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Blackwell DJ, Faggioni M, Wleklinski MJ, Gomez-Hurtado N, Venkataraman R, Gibbs CE, Baudenbacher FJ, Gong S, Fishman GI, Boyle PM, Pfeifer K, Knollmann BC. The Purkinje-myocardial junction is the anatomic origin of ventricular arrhythmia in CPVT. JCI Insight 2022; 7:e151893. [PMID: 34990403 PMCID: PMC8855823 DOI: 10.1172/jci.insight.151893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.
Collapse
Affiliation(s)
- Daniel J. Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michela Faggioni
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew J. Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| | - Nieves Gomez-Hurtado
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raghav Venkataraman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Chelsea E. Gibbs
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Rockefeller University, New York, New York, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Patrick M. Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Institute for Stem Cell and Regenerative Medicine and
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Bjorn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pharmacology and
| |
Collapse
|
4
|
Li S, Jia Z, Zhang Z, Li Y, Yan M, Yu T. Association Study of Genetic Variants in Calcium Signaling-Related Genes With Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:642141. [PMID: 34912794 PMCID: PMC8666440 DOI: 10.3389/fcell.2021.642141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Calcium ions (Ca2+) play an essential role in excitation-contraction coupling in the heart. The association between cardiovascular diseases (CVDs) and genetic polymorphisms in key regulators of Ca2+ homeostasis is well established but still inadequately understood. Methods: The associations of 11,274 genetic variants located in nine calcium signaling-related genes with 118 diseases of the circulatory system were explored using a large sample from the United Kingdom Biobank (N = 308,366). The clinical outcomes in electronic health records were mapped to the phecode system. Survival analyses were employed to study the role of variants in CVDs incidence and mortality. Phenome-wide association studies (PheWAS) were performed to investigate the effect of variants on cardiovascular risk factors. Results: The reported association between rs1801253 in β1-adrenergic receptor (ADRB1) and hypertension was successfully replicated, and we additionally found the blood pressure-lowering G allele of this variant was associated with a delayed onset of hypertension and a decreased level of apolipoprotein A. The association of rs4484922 in calsequestrin 2 (CASQ2) with atrial fibrillation/flutter was identified, and this variant also displayed nominal evidence of association with QRS duration and carotid intima-medial thickness. Moreover, our results indicated suggestive associations of rs79613429 in ryanodine receptor 2 (RYR2) with precordial pain. Conclusion: Multiple novel associations established in our study highlight genetic testing as a useful method for CVDs diagnosis and prevention.
Collapse
Affiliation(s)
- Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
5
|
Han B, Zhang Y, Bi X, Zhou Y, Krueger CJ, Hu X, Zhu Z, Tong X, Zhang B. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 2021; 12:39-56. [PMID: 32681448 PMCID: PMC7815861 DOI: 10.1007/s13238-020-00747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yang Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, Atlanta, GA, 33032, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Wleklinski MJ, Kannankeril PJ, Knollmann BC. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J Physiol 2020; 598:2817-2834. [PMID: 32115705 PMCID: PMC7699301 DOI: 10.1113/jp276757] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced cardiac channelopathy that has a high mortality in untreated patients. Our understanding has grown tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established that the deadly arrhythmias are caused by unregulated 'pathological' calcium release from the sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important questions remain regarding the molecular mechanisms that are responsible for the pathological calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 (encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), TRDN (encoding triadin), CALM1, CALM2 and CALM3 (encoding identical calmodulin protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats originate from the conduction system or the ventricular working myocardium. Finally, we review the treatments that are available for patients with CPVT, their efficacy, and how therapy could be improved in the future.
Collapse
Affiliation(s)
- Matthew J Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prince J Kannankeril
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bjӧrn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
8
|
Park SJ, Zhang D, Qi Y, Li Y, Lee KY, Bezzerides VJ, Yang P, Xia S, Kim SL, Liu X, Lu F, Pasqualini FS, Campbell PH, Geva J, Roberts AE, Kleber AG, Abrams DJ, Pu WT, Parker KK. Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From Engineered Human Heart Tissue. Circulation 2019; 140:390-404. [PMID: 31311300 PMCID: PMC6750809 DOI: 10.1161/circulationaha.119.039711] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.).,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu (Y.L.)
| | - Keel Yong Lee
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Sean L Kim
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Fujian Lu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Judith Geva
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (A.G.K.)
| | - Dominic J Abrams
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - William T Pu
- Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA.,Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul, South Korea (K.K.P.). Dr Park is currently at the Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University School of Medicine, Atlanta
| |
Collapse
|
9
|
Prajapati R, Fujita T, Suita K, Nakamura T, Cai W, Hidaka Y, Umemura M, Yokoyama U, Knollmann BC, Okumura S, Ishikawa Y. Usefulness of Exchanged Protein Directly Activated by cAMP (Epac)1-Inhibiting Therapy for Prevention of Atrial and Ventricular Arrhythmias in Mice. Circ J 2019; 83:295-303. [PMID: 30518738 DOI: 10.1253/circj.cj-18-0743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It has been suggested that protein directly activated by cAMP (Epac), one of the downstream signaling molecules of β-adrenergic receptor (β-AR), may be an effective target for the treatment of arrhythmia. However, there have been no reports on the anti-arrhythmic effects or cardiac side-effects of Epac1 inhibitors in vivo. METHODS AND RESULTS In this study, the roles of Epac1 in the development of atrial and ventricular arrhythmias are examined. In addition, we examined the usefulness of CE3F4, an Epac1-selective inhibitor, in the treatment of the arrhythmias in mice. In Epac1 knockout (Epac1-KO) mice, the duration of atrial fibrillation (AF) was shorter than in wild-type mice. In calsequestrin2 knockout mice, Epac1 deficiency resulted in a reduction of ventricular arrhythmia. In both atrial and ventricular myocytes, sarcoplasmic reticulum (SR) Ca2+ leak, a major trigger of arrhythmias, and spontaneous SR Ca2+ release (SCR) were attenuated in Epac1-KO mice. Consistently, CE3F4 treatment significantly prevented AF and ventricular arrhythmia in mice. In addition, the SR Ca2+ leak and SCR were significantly inhibited by CE3F4 treatment in both atrial and ventricular myocytes. Importantly, cardiac function was not significantly affected by a dosage of CE3F4 sufficient to exert anti-arrhythmic effects. CONCLUSIONS These findings indicated that Epac1 is involved in the development of atrial and ventricular arrhythmias. CE3F4, an Epac1-selective inhibitor, prevented atrial and ventricular arrhythmias in mice.
Collapse
Affiliation(s)
- Rajesh Prajapati
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
- Tsurumi University School of Dental Medicine
| | - Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University School of Medicine
| | | | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| |
Collapse
|