1
|
Zhang D, Wei X, Zhang J, Cui D, Zhang P, Chen S, Zou Y, Chen W, Tang D, Liu C, Bian J, Tang Q, Tan L. Variation analysis and quantitative trait loci mapping of 16 free amino acid traits in the tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2025; 25:194. [PMID: 39953411 PMCID: PMC11827182 DOI: 10.1186/s12870-024-06038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/31/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND The levels of free amino acids (FAAs) and the timing of bud flush (TBF) are among the the most economic traits of tea plants (Camellia sinensis). Investigating the genetic variation characteristics of FAAs and their potential associations with TBF is critical for the breeding of new tea cultivars with high economic value. METHODS In this study, we utilized the 'Emei Wenchun' (♀) × 'Chuanmu 217' (♂) filial 1 (F1) genetic population (n = 208) and measured their FAA contents in the "one bud and two leaves" samples across two spring seasons and one summer season using high-performance liquid chromatography combined with the Waters AccQ-Tag method. The sprouting index (SPI) was observed over two springs to quantify the TBF trait. A genetic map previously constructed based on the same population was employed for quantitative trait loci (QTL) mapping. RESULTS A total of 16 FAAs were measured, and the average total FAA contents were 28.1 and 25.4 mg/g (dry weight) in the two spring seasons and 14.29 mg/g in the summer season. Within the population, the coefficients of variation (CV) for the FAAs ranged from 23 to 41% within each season, and the correlation coefficients (r) varied from 0.15 to 0.35 across seasons. ANOVA analyses revealed that 13 out of the 16 FAAs exhibited significant genetic variation, with the estimated broad-sense heritability (h2) ranging between 10.33% and 57.10%. Interestingly, three FAAs and the total FAA contents showed significant positive correlations (r = 0.21-0.34, P < 0.01) with the SPI trait in both spring seasons. QTL mapping identified 13 FAA-associated QTLs distributed across eight linkage groups. CONCLUSION Within the F1 population, the FAAs exhibited considerable variation across seasons, their heritabilities were generally low (most ≤ 50%). There was a weak but significant positive correlation between FAAs and TBF. Additionally, 13 FAA-associated QTLs were identified. The results of this study enhance our understanding of the genetic variation characteristics of FAAs and provide insights for breeding tea cultivars with both higher FAAs and earlier TBF.
Collapse
Affiliation(s)
- Dongyang Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xujiao Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dong Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Peng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shengxiang Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Chen Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Jinlin Bian
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
- , No.211, Huimin Road, Wenjiang District, Chengdu City, 611130, China.
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Xu Y, Zhou Q, Wang X, Meng X, Zhang Z, Zhang X, Zhang X, Niu S, Chen G, Liu L, Shen T. Metabolome and transcriptomics analyses reveal quality differences between Camellia tachangensis F. C. Zhang and C. sinensis (L.) O. Kunzte. PLoS One 2024; 19:e0314595. [PMID: 39637125 PMCID: PMC11620563 DOI: 10.1371/journal.pone.0314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Tea ranks among the top three most beloved non-alcoholic beverages worldwide and boasts significant economic and health benefits. In addition to Camellia sinensis (L.) O. Kuntze, and other Camellia plants in China are consumed by residents as tea drinks, which also have important economic value. The present study introduces one of the wild tea species, namely, Camellia tachangensis F. C. Zhang. We analyzed changes in metabolite abundance and gene expression patterns of C. tachangensis and C. sinensis using metabonomics and transcriptomics. We found 1056 metabolites, including 256 differential metabolites (67 upregulated and 189 downregulated). Additionally, transcriptome analysis revealed 8049 differentially expressed genes, with 4418 upregulated and 3631 downregulated genes. C. sinensis boasts a notable abundance of Amino acids, which can be attributed to its specific genetic makeup. In Theanine and Caffeine metabolic pathways, the levels of the majority of amino acids and caffeine tend to decrease. In Flavonoid biosynthesis, the levels of the Flavanone Fustin and Epicatechin are higher in C. tachangensis, while Epigallocatechin and Gallocatechin levels are higher in C. sinensis. This indicates that the metabolic components of C. sinensis and C. tachangensis are not identical, which may result in a unique flavor.
Collapse
Affiliation(s)
- Yunfei Xu
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
| | - Qihang Zhou
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
| | - Xinglin Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xingpan Meng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhengdong Zhang
- College of Computer Science, Guiyang University, Guiyang, China
| | - Xu Zhang
- Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang, China
| | - Ximin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Suzhen Niu
- Institute of Agricultural and biological engineering, Guizhou University, Guiyang, China
| | - Guiping Chen
- School of International Education, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Tie Shen
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
3
|
Zheng J, Su H, Pu S, Chen H, El-Kassaby YA, Yang Z, Feng J. High-yield hybrid breeding of Camellia oleifolia based on ISSR molecular markers. BMC PLANT BIOLOGY 2024; 24:517. [PMID: 38851667 PMCID: PMC11162053 DOI: 10.1186/s12870-024-05218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND C. Oleifera is among the world's largest four woody plants known for their edible oil production, yet the contribution rate of improved varieties is less than 20%. The species traditional breeding is lengthy cycle (20-30 years), occupation of land resources, high labor cost, and low accuracy and efficiency, which can be enhanced by molecular marker-assisted selection. However, the lack of high-quality molecular markers hinders the species genetic analysis and molecular breeding. RESULTS Through quantitative traits characterization, genetic diversity assessment, and association studies, we generated a selection population with wide genetic diversity, and identified five excellent high-yield parental combinations associated with four reliable high-yield ISSR markers. Early selection criteria were determined based on kernel fresh weight and cultivated 1-year seedling height, aided by the identification of these 4 ISSR markers. Specific assignment of selected individuals as paternal and maternal parents was made to capitalize on their unique attributes. CONCLUSIONS Our results indicated that molecular markers-assisted breeding can effectively shorten, enhance selection accuracy and efficiency and facilitate the development of a new breeding system for C. oleifera.
Collapse
Affiliation(s)
- Jinjia Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiqi Su
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaosheng Pu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Zhijian Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jinling Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Wu Z, Liu K, Zhang X, Tang Q, Zeng L. CsNYC1a Mediates Chlorophyll Degradation and Albino Trait Formation in the Arbor-Type Tea Plant Camellia nanchuanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848450 DOI: 10.1021/acs.jafc.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Albino germplasms are prized tea plant mutants with yellow/white leaves. However, understanding of the albino mechanisms in non-Camellia sinensis tea species remains limited. This study elucidated the albino trait formation in Nanchuan Dachashu (C. nanchuanica), an arbor-type tea species, and its association with tea quality. The yellow-leaved albino individual NH1 exhibited abnormal chloroplast ultrastructure and reduced chlorophyll/carotenoid levels compared to green-leaved NL1. Integrating transcriptomics, metabolomics, yeast one-hybrid, and transgenic approaches identified the chlorophyll b reductase gene CsNYC1a as a key regulator, which was significantly up-regulated in NH1, and its overexpression in Arabidopsis recapitulated the albino phenotype. In yeast, histone CsH1.2 binds to the CsNYC1a promoter. These findings suggest that CsH1.2-CsNYC1a-mediated chlorophyll degradation may be a key mechanism underlying albino formation in Nanchuan Dachashu. In addition, as a germplasm with higher polyphenol-to-amino acid ratio than NL1, NH1 offers more possibilities for breeding and application.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Liu D, Ye Y, Tang R, Gong Y, Chen S, Zhang C, Mei P, Chen J, Chen L, Ma C. High-density genetic map construction and QTL mapping of a zigzag-shaped stem trait in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2024; 24:382. [PMID: 38724900 PMCID: PMC11080114 DOI: 10.1186/s12870-024-05082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC1 artificial hybrid populations. Our genetic analysis revealed the zigzag-shaped trait as a qualitative trait. Utilizing whole-genome resequencing, we constructed a high-density genetic map from the BC1 population, incorporating 5,250 SNP markers across 15 linkage groups, covering 3,328.51 cM with an average marker interval distance of 0.68 cM. A quantitative trait locus (QTL) for the zigzag-shaped trait was identified on chromosome 4, within a 61.2 to 97.2 Mb range, accounting for a phenotypic variation explained (PVE) value of 13.62%. Within this QTL, six candidate genes were pinpointed. To better understand their roles, we analyzed gene expression in various tissues and individuals with erect and zigzag-shaped stems. The results implicated CsXTH (CSS0035625) and CsCIPK14 (CSS0044366) as potential key contributors to the zigzag-shaped stem formation. These discoveries lay a robust foundation for future functional genetic mapping and tea plant genetic enhancement.
Collapse
Affiliation(s)
- Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Rongjin Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Piao Mei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
6
|
Liu H, Duan L, Ma J, Jin J, Huang R, Liu Y, Chen S, Xu X, Chen J, Yao M, Chen L. CsEXL3 regulate mechanical harvest-related droopy leaves under the transcriptional activation of CsBES1.2 in tea plant. HORTICULTURE RESEARCH 2024; 11:uhae074. [PMID: 38738211 PMCID: PMC11088715 DOI: 10.1093/hr/uhae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
Due to a labor shortage, the mechanical harvesting of tea plantations has become a focal point. However, mechanical harvest efficiency was hampered by droopy leaves, leading to a high rate of broken tea shoots and leaves. Here, we dissected the genetic structure of leaf droopiness in tea plants using genome-wide association studies (GWAS) on 146 accessions, combined with transcriptome from two accessions with contrasting droopy leaf phenotypes. A set of 16 quantitative trait loci (QTLs) containing 54 SNPs and 34 corresponding candidate genes associated with droopiness were then identified. Among these, CsEXL3 (EXORDIUM-LIKE 3) from Chromosome 1 emerged as a candidate gene. Further investigations revealed that silencing CsEXL3 in tea plants resulted in weaker vascular cell malformation and brassinosteroid-induced leaf droopiness. Additionally, brassinosteroid signal factor CsBES1.2 was proved to participate in CsEXL3-induced droopiness and vascular cell malformation via using the CsBES1.2-silencing tea plant. Notably, CsBES1.2 bound on the E-box of CsEXL3 promoter to transcriptionally activate CsEXL3 expression as CUT&TAG based ChIP-qPCR and ChIP-seq suggested in vivo as well as EMSA and Y1H indicated in vitro. Furthermore, CsEXL3 instead of CsBES1.2 decreased lignin content and the expressing levels of lignin biosynthesis genes. Overall, our findings suggest that CsEXL3 regulates droopy leaves, partially through the transcriptional activation of CsBES1.2, with the potential to improve mechanical harvest efficiency in tea plantations.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingxiao Duan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiqiang Jin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoying Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
7
|
Qiu H, Zhang X, Zhang Y, Jiang X, Ren Y, Gao D, Zhu X, Usadel B, Fernie AR, Wen W. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1001-1016. [PMID: 38048231 PMCID: PMC10955498 DOI: 10.1111/pbi.14241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5, and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.
Collapse
Affiliation(s)
- Haiji Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaoliang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Youjun Zhang
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yujia Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dawei Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiang Zhu
- Thermo Fisher ScientificShanghaiChina
| | - Björn Usadel
- Institute of Bio‐ and Geosciences, IBG‐4: Bioinformatics, CEPLAS, Forschungszentrum JülichJülichGermany
- Institute for Biological Data ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
8
|
Chang M, Sun Y, Fang K, Fu M, Ma J, Gao Y, Chen Q, Liu L, Zhang Z, Wan X, Sun J. CsMYB73 negatively regulates theanine accumulation mediated by CsGGT2 and CsGGT4 in tea shoots ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae012. [PMID: 38464471 PMCID: PMC10923645 DOI: 10.1093/hr/uhae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Theanine metabolism is a necessary biological process during the planting and production of tea that determines tea quality. There is currently little knowledge about the transcriptional regulation of theanine metabolism in tea plants. In this study, we demonstrated that γ-glutamyl-transpeptidase CsGGT4, as a homologous protein of the theanine hydrolase CsGGT2, exhibited a higher theanine synthesis catalytic efficiency. Homology modeling and molecular docking showed that differential protein structures between CsGGT2 and CsGGT4 implied their different biological functions in tea plants. Theanine content correlated significantly with the expression of CsGGT2, CsGGT4 and the transcription factor CsMYB73 in tea shoots from different seasons. Additionally, CsMYB73 was confirmed to act as a nucleus-localized transcription factor (TF), directly interacts with the CsGGT2 and CsGGT4 promoters, serving as an activator of CsGGT2 and a suppressor of CsGGT4. Consequently, this leads to a negative association with theanine accumulation in tea shoots. Furthermore, the continuous increase in CsMYB73 produced a significantly increase in CsGGT2 expression and inhibited CsGGT4 expression. The present study reveals that the degradation of theanine has been observed to increase, concomitantly with the inhibition of theanine synthesis, resulting in a significant decline in the accumulation of theanine in tea shoots during the process of seasonal greening in 'Huangkui' leaves. This study contributes to the broader comprehension of the intricate transcriptional regulatory hierarchy that governs the metabolism of theanine in tea shoots, offering novel approaches for managing tea plantations and enhancing tea quality.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- College of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Kangzhi Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yang Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
9
|
Zhang C, Liu H, Wang J, Li Y, Liu D, Ye Y, Huang R, Li S, Chen L, Chen J, Yao M, Ma C. A key mutation in magnesium chelatase I subunit leads to a chlorophyll-deficient mutant of tea (Camellia sinensis). JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:935-946. [PMID: 37904595 DOI: 10.1093/jxb/erad430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Abstract
Tea (Camellia sinensis) is a highly important beverage crop renowned for its unique flavour and health benefits. Chlorotic mutants of tea, known worldwide for their umami taste and economic value, have gained global popularity. However, the genetic basis of this chlorosis trait remains unclear. In this study, we identified a major-effect quantitative trait locus (QTL), qChl-3, responsible for the chlorosis trait in tea leaves, linked to a non-synonymous polymorphism (G1199A) in the magnesium chelatase I subunit (CsCHLI). Homozygous CsCHLIA plants exhibited an albino phenotype due to defects in magnesium protoporphyrin IX and chlorophylls in the leaves. Biochemical assays revealed that CsCHLI mutations did not affect subcellular localization or interactions with CsCHLIG and CsCHLD. However, combining CsCHLIA with CsCHLIG significantly reduced ATPase activity. RNA-seq analysis tentatively indicated that CsCHLI inhibited photosynthesis and enhanced photoinhibition, which in turn promoted protein degradation and increased the amino acid levels in chlorotic leaves. RT-qPCR and enzyme activity assays confirmed the crucial role of asparagine synthetase and arginase in asparagine and arginine accumulation, with levels increasing over 90-fold in chlorotic leaves. Therefore, this study provides insights into the genetic mechanism underlying tea chlorosis and the relationship between chlorophyll biosynthesis and amino acid metabolism.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junya Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Sujuan Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
10
|
Wang L, Qian Y, Wu L, Wei K, Wang L. The MADS-box transcription factor CsAGL9 plays essential roles in seed setting in Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108301. [PMID: 38232497 DOI: 10.1016/j.plaphy.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
The number of seed setting (NSS) is an important biological trait that affects tea propagation and yield. In this study, the NSS of an F1 tea population (n = 324) generated via a cross between 'Longjing 43' and 'Baihaozao' was investigated at two locations in two consecutive years. Quantitative trait locus (QTL) mapping of the NSS was performed, and 10 major QTLs were identified. In total, 318 genes were found in these 10 QTLs intervals, and 11 key candidate genes were preliminarily identified. Among them, the MADS-box transcription factor AGAMOUS LIKE 9 (CsAGL9, CSS0037962) located in the most stable QTL (qNSS2) was identified as a key gene affecting the NSS. CsAGL9 overexpression in Arabidopsis promoted early flowering and significantly decreased the length and number of pods and number of seeds per pod. Transcriptome analysis demonstrated that the auxin pathway, a key hormone pathway regulating plant reproduction, was highly affected in the transgenic lines. The auxin pathway was likewise the most prominent in the gene co-expression network study of CsAGL9 in tea plants. In summary, we identified CsAGL9 is essential for seed setting using QTL mapping integrated with RNA-seq, which shed a new light on the mechanism NSS of seed setting in tea plants.
Collapse
Affiliation(s)
- Liubin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinhong Qian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyun Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| | - Liyuan Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| |
Collapse
|
11
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
12
|
Huang R, Wang Z, Wen W, Yao M, Liu H, Li F, Zhang S, Ni D, Chen L. Comprehensive dissection of variation and accumulation of free amino acids in tea accessions. HORTICULTURE RESEARCH 2024; 11:uhad263. [PMID: 38304331 PMCID: PMC10833077 DOI: 10.1093/hr/uhad263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 02/03/2024]
Abstract
Free amino acids (FAAs) positively determine the tea quality, notably theanine (Thea), endowing umami taste of tea infusion, which is the profoundly prevalent research in albino tea genetic resources. Therefore, 339 tea accessions were collected to study FAAs level for deciphering its variation and accumulation mechanism. Interestingly, alanine (Ala) and Thea which had the highest diversity index (H') value among three varieties of Camellia sinensis (L.) O. Kuntze were significantly higher than wild relatives (P < 0.05). The intraspecific arginine (Arg) and glutamine (Gln) contents in C. sinensis var. assamica were significantly lower than sinensis and pubilimba varieties. Moreover, the importance of interdependencies operating across FAAs and chlorophyll levels were highlighted via the cell ultrastructure, metabolomics, and transcriptome analysis. We then determined that the association between phytochrome interacting factor 1 (CsPIF1) identified by weighted gene co-expression network analysis (WGCNA) and Thea content. Intriguingly, transient knock-down CsPIF1 expression increased Thea content in tea plant, and the function verification of CsPIF1 in Arabidopsis also indicated that CsPIF1 acts as a negative regulator of Thea content by mainly effecting the genes expression related to Thea biosynthesis, transport, and hydrolysis, especially glutamate synthase (CsGOGAT), which was validated to be associated with Thea content with a nonsynonymous SNP by Kompetitive Allele-Specific PCR (KASP). We also investigated the interspecific and geographical distribution of this SNP. Taken together, these results help us to understand and clarify the variation and profile of major FAAs in tea germplasms and promote efficient utilization in tea genetic improvement and breeding.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihua Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weiwei Wen
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shuran Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
13
|
Jiang L, Xie S, Zhou C, Tian C, Zhu C, You X, Chen C, Lai Z, Guo Y. Analysis of the Genetic Diversity in Tea Plant Germplasm in Fujian Province Based on Restriction Site-Associated DNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 13:100. [PMID: 38202408 PMCID: PMC10780744 DOI: 10.3390/plants13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Fujian province, an important tea-producing area in China, has abundant tea cultivars. To investigate the genetic relationships of tea plant cultivars in Fujian province and the characteristics of the tea plant varieties, a total of 70 tea cultivars from Fujian and other 12 provinces in China were subjected to restriction site-associated DNA sequencing (RAD-seq). A total of 60,258,975 single nucleotide polymorphism (SNP) sites were obtained. These 70 tea plant cultivars were divided into three groups based on analyzing the phylogenetic tree, principal component, and population structure. Selection pressure analysis indicated that nucleotide diversity was high in Southern China and genetically distinct from cultivars of Fujian tea plant cultivars, according to selection pressure analysis. The selected genes have significant enrichment in pathways associated with metabolism, photosynthesis, and respiration. There were ten characteristic volatiles screened by gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical methods, among which the differences in the contents of methyl salicylate, 3-carene, cis-3-hexen-1-ol, (E)-4-hexen-1-ol, and 3-methylbutyraldehyde can be used as reference indicators of the geographical distribution of tea plants. Furthermore, a metabolome genome-wide association study (mGWAS) revealed that 438 candidate genes were related to the aroma metabolic pathway. Further analysis showed that 31 genes of all the selected genes were screened and revealed the reasons for the genetic differences in aroma among tea plant cultivars in Fujian and Southern China. These results reveal the genetic diversity in the Fujian tea plants as well as a theoretical basis for the conservation, development, and utilization of the Fujian highly aromatic tea plant cultivars.
Collapse
Affiliation(s)
- Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China;
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (X.Y.); (C.C.)
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (X.Y.); (C.C.)
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
14
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, Li X, Shan R, You X, Wei K, Chen C. Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [ Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors. Int J Mol Sci 2023; 25:242. [PMID: 38203412 PMCID: PMC10779186 DOI: 10.3390/ijms25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
Collapse
Affiliation(s)
- Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Sitong Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| |
Collapse
|
15
|
Li Y, Zhang C, Ma C, Chen L, Yao M. Transcriptome and Biochemical Analyses of a Chlorophyll-Deficient Bud Mutant of Tea Plant ( Camellia sinensis). Int J Mol Sci 2023; 24:15070. [PMID: 37894753 PMCID: PMC10606798 DOI: 10.3390/ijms242015070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Tea leaf-color mutants have attracted increasing attention due to their accumulation of quality-related biochemical components. However, there is limited understanding of the molecular mechanisms behind leaf-color bud mutation in tea plants. In this study, a chlorina tea shoot (HY) and a green tea shoot (LY) from the same tea plant were investigated using transcriptome and biochemical analyses. The results showed that the chlorophyll a, chlorophyll b, and total chlorophyll contents in the HY were significantly lower than the LY's, which might have been caused by the activation of several genes related to chlorophyll degradation, such as SGR and CLH. The down-regulation of the CHS, DFR, and ANS involved in flavonoid biosynthesis might result in the reduction in catechins, and the up-regulated GDHA and GS2 might bring about the accumulation of glutamate in HY. RT-qPCR assays of nine DEGs confirmed the RNA-seq results. Collectively, these findings provide insights into the molecular mechanism of the chlorophyll deficient-induced metabolic change in tea plants.
Collapse
Affiliation(s)
| | | | | | | | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.L.); (C.Z.); (C.M.); (L.C.)
| |
Collapse
|
16
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
17
|
Liu D, Wei K, Zhang C, Liu H, Gong Y, Ye Y, Chen J, Yao M, Chen L, Ma C. The potential effects of chlorophyll-deficient mutation and tree_age on the accumulation of amino acid components in tea plants. Food Chem 2023; 411:135527. [PMID: 36701915 DOI: 10.1016/j.foodchem.2023.135527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Albino tea has been receiving growing attention on the tea market due to its attractive appearance and fresh taste, mainly caused by high amino acid contents. Here, variations in the contents of five free amino acids in relation to pigment contents and tree age in two hybrid populations'Longjin 43'(♀) × 'Baijiguan'(♂) and 'Longjin 43'(♀) ×'Huangjinya'(♂) with 334 first filial generation individuals including chlorophyll-deficient and normal tea plants were investigated. The data showed that the contents of main amino acids in all filial generation gradually decreased as plant age increased. Principal component analysis indicated that the amino acid content of individual plant tended to be stable with the growth of plants. Correlation analysis clarified that several main amino acids were significantly negatively correlated with chlorophyll a, chlorophyll b and carotenoid contents. Our results showed that the accumulation of amino acids in tea plant was closely related to leaf color variation and the tree age during growing period.
Collapse
Affiliation(s)
- Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
18
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
19
|
Chen S, Li X, Liu Y, Chen J, Ma J, Chen L. Identification of QTL controlling volatile terpene contents in tea plant ( Camellia sinensis) using a high-aroma 'Huangdan' x 'Jinxuan' F 1 population. FRONTIERS IN PLANT SCIENCE 2023; 14:1130582. [PMID: 37063218 PMCID: PMC10090551 DOI: 10.3389/fpls.2023.1130582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Aroma is an important factor affecting the character and quality of tea. The improvement of aroma trait is a crucial research direction of tea plant breeding. Volatile terpenes, as the major contributors to the floral odors of tea products, also play critical roles in the defense responses of plants to multiple stresses. However, previous studies have largely focused on the aroma formation during the manufacture of tea or the comparison of raw tea samples. The mechanisms causing different aroma profiles between tea cultivars have remained underexplored. In the current study, a high-density genetic linkage map of tea plant was constructed based on an F1 population of 'Huangdan' × 'Jinxuan' using genotyping by sequencing. This linkage map covered 1754.57 cM and contained 15 linkage groups with a low inter-marker distance of 0.47 cM. A total of 42 QTLs associated with eight monoterpene contents and 12 QTLs associated with four sesquiterpenes contents were identified with the average PVE of 12.6% and 11.7% respectively. Furthermore, six candidate genes related to volatile terpene contents were found in QTL cluster on chromosome 5 by RNA-seq analysis. This work will enrich our understanding of the molecular mechanism of volatile terpene biosynthesis and provide a theoretical basis for tea plant breeding programs for aroma quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang Chen
- *Correspondence: Jianqiang Ma, ; Liang Chen,
| |
Collapse
|
20
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, Lu L, Zhu C, Lai Z, Guo Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022; 11:foods11223628. [PMID: 36429222 PMCID: PMC9688969 DOI: 10.3390/foods11223628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The flavour of white tea can be influenced by the season in which the fresh leaves are picked. In this study, the sensory evaluation results indicated that spring-picked white tea (SPWT) was stronger than autumn-picked white tea (APWT) in terms of the taste of umami, smoothness, astringency, and thickness as well as the aromas of flower and fresh. To explore key factors of sensory differences, a combination of biochemical composition determination, widely targeted volatilomics (WTV) analysis, multivariate statistical analysis, and odour activity value (OAV) analysis was employed. The phytochemical analysis showed that the free amino acid, tea polyphenol, and caffeine contents of SPWTs were significantly higher than those of APWTs, which may explain the higher umami, smoothness, thickness, and astringency scores of SPWTs than those of APWTs. The sabinene, (2E, 4E)-2, 4-octadienal, (-)-cis-rose oxide, caramel furanone, trans-rose oxide, and rose oxide contents were significantly higher in SPWTs than in APWTs, which may result in stronger flowery, fresh, and sweet aromas in SPWTs than in APWTs. Among these, (2E,4E)-2,4-octadienal and (-)-cis-rose oxide can be identified as key volatiles. This study provides an objective and accurate basis for classifying SPWTs and APWTs at the metabolite level.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
21
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
22
|
Lin S, Chen Z, Chen T, Deng W, Wan X, Zhang Z. Theanine metabolism and transport in tea plants ( Camellia sinensis L.): advances and perspectives. Crit Rev Biotechnol 2022; 43:327-341. [PMID: 35430936 DOI: 10.1080/07388551.2022.2036692] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theanine, a tea plant-specific non-proteinogenic amino acid, is the most abundant free amino acid in tea leaves. It is also one of the most important quality components of tea because it endows the "umami" taste, relaxation-promoting, and many other health benefits of tea infusion. Its content in tea leaves is directly correlated with the quality and price of green tea. Theanine biosynthesis primarily occurs in roots and is transported to new shoots in tea plants. Recently, great advances have been made in theanine metabolism and transport in tea plants. Along with the deciphering of the genomic sequences of tea plants, new genes in theanine metabolic pathway were discovered and functionally characterized. Theanine transporters were identified and were characterized on the affinity for: theanine, substrate specificity, spatiotemporal expression, and the role in theanine root-to-shoot transport. The mechanisms underlying the regulation of theanine accumulation by: cultivars, seasons, nutrients, and environmental factors are also being rapidly uncovered. Transcription factors were identified to be critical regulators of theanine biosynthesis. In this review, we summarize the progresses in theanine: biosynthesis, catabolism, and transport processes. We also discuss the future studies on theanine in tea plants, and application of the knowledge to crops to synthesize theanine to improve the health-promoting quality of non-tea crops.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
23
|
Tan L, Cui D, Wang L, Liu Q, Zhang D, Hu X, Fu Y, Chen S, Zou Y, Chen W, Wen W, Yang X, Yang Y, Li P, Tang Q. Genetic analysis of the early bud flush trait of tea plants ( Camellia sinensis) in the cultivar 'Emei Wenchun' and its open-pollinated offspring. HORTICULTURE RESEARCH 2022; 9:uhac086. [PMID: 35694722 PMCID: PMC9178331 DOI: 10.1093/hr/uhac086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
The timing of bud flush (TBF) in the spring is one of the most important agronomic traits of tea plants (Camellia sinensis). In this study, we designed an open-pollination breeding program using 'Emei Wenchun' (EW, a clonal tea cultivar with extra-early TBF) as a female parent. A half-sib population (n = 388) was selected for genotyping using specific-locus amplified fragment sequencing. The results enabled the identification of paternity for 294 (75.8%) of the offspring, including 11 (2.8%) from EW selfing and 217 (55.9%) assigned to a common father, 'Chuanmu 217' (CM). The putative EW × CM full-sib population was used to construct a linkage map. The map has 4244 markers distributed in 15 linkage groups, with an average marker distance of 0.34 cM. A high degree of collinearity between the linkage map and physical map was observed. Sprouting index, a trait closely related to TBF, was recorded for the offspring population in 2020 and 2021. The trait had moderate variation, with coefficients of variation of 18.5 and 17.6% in 2020 and 2021, respectively. Quantitative trait locus (QTL) mapping that was performed using the linkage map identified two major QTLs and three minor QTLs related to the sprouting index. These QTLs are distributed on Chr3, Chr4, Chr5, Chr9, and Chr14 of the reference genome. A total of 1960 predicted genes were found within the confidence intervals of QTLs, and 22 key candidate genes that underlie these QTLs were preliminarily screened. These results are important for breeding and understanding the genetic base of the TBF trait of tea plants.
Collapse
Affiliation(s)
- Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
- Corresponding authors. E-mail: ;
| | - Dong Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Liubin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongyang Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yidan Fu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengxiang Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Weiqi Wen
- Mingshan Tea Plant Breeding and Reproduce Farm of Sichuan Province, Yaan 625101, Sichuan, China
| | - Xuemei Yang
- Mingshan Tea Plant Breeding and Reproduce Farm of Sichuan Province, Yaan 625101, Sichuan, China
| | - Yang Yang
- Sichuan Yizhichun Tea Industry Co., Ltd,, Leshan 614503, Sichuan, China
| | - Pinwu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
- Corresponding authors. E-mail: ;
| |
Collapse
|