1
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
2
|
Zhai X, Yan J, Liu W, Li Z, Cao Z, Deng Y, Mo R, Wang B, Cheng X, Xie D, Jiang B. Map-based cloning revealed BhAPRR2 gene regulating the black peel formation of mature fruit in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:3. [PMID: 39658692 DOI: 10.1007/s00122-024-04796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
KEY MESSAGE Map-based cloning revealed BhAPRR2, encoding a two-component response-regulating protein that regulates the black peel formation of mature fruit in wax gourd. Wax gourd is an economically significant vegetable crop, and peel color is a crucial agronomic trait that influences its commercial value. Although genes controlling light green or white peel have been cloned in wax gourd, the genetic basis and molecular mechanism underlying black peel remain unclear. Here, we confirmed that the peel color of wax gourd is a qualitative trait governed by single gene, with black being dominant over green. Through bulked segregant analysis sequencing (BSA-seq) and map-based cloning, we identified Bh.pf3chr5g483 as the candidate gene. This gene encodes a two-component response-regulating protein and is homologous to APRR2, referred to as BhAPRR2. Compared to P170, the BhAPRR2 in YD1 exhibits multiple mutations in both its coding and promoter regions. Notably, the mutations in the coding region do not affect its nuclear localization or transcriptional activation activity. However, the mutations in the promoter region substantially increase its expression in the peel of YD1, potentially contributing to the black peel phenotype observed in this variety. Furthermore, we developed an insertion/deletion (InDel) marker based on a 93-base pair (bp) insertion/deletion mutation in the promoter region of BhAPRR2, which achieved up to 95.8% phenotypic accuracy in a natural population comprising 165 wax gourd germplasms. In summary, our findings suggest that mutations in the promoter region of BhAPRR2 may contribute to the development of black peel in wax gourd. This discovery provides new insights into the molecular and genetic mechanisms underlying peel color diversity and offers a valuable molecular marker for wax gourd breeding efforts.
Collapse
Affiliation(s)
- Xuling Zhai
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Jinqiang Yan
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Wenrui Liu
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenqiang Cao
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Ying Deng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences/ Horticultural Engineering Technology Research Center of Guizhou, Guiyang, 550006, China
| | - Renlian Mo
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Baochen Wang
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Xiaoxin Cheng
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Dasen Xie
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Biao Jiang
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Diao Q, Tian S, Cao Y, Yao D, Fan H, Jiang X, Zhang W, Zhang Y. Physiological, transcriptomic, and metabolomic analyses of the chilling stress response in two melon (Cucumis melo L.) genotypes. BMC PLANT BIOLOGY 2024; 24:1074. [PMID: 39538130 PMCID: PMC11562333 DOI: 10.1186/s12870-024-05773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chilling stress is a key abiotic stress that severely restricts the growth and quality of melon (Cucumis melo L.). Few studies have investigated the mechanism of response to chilling stress in melon. RESULTS We characterized the physiological, transcriptomic, and metabolomic response of melon to chilling stress using two genotypes with different chilling sensitivity ("162" and "13-5A"). "162" showed higher osmotic regulation ability and antioxidant capacity to withstand chilling stress. Transcriptome analysis identified 4395 and 4957 differentially expressed genes (DEGs) in "162" and "13-5A" under chilling stress, respectively. Metabolome analysis identified 615 and 489 differential enriched metabolites (DEMs) were identified in "162" and "13-5A" under chilling stress condition, respectively. Integrated transcriptomic and metabolomic analysis showed enrichment of glutathione metabolism, and arginine (Arg) and proline (Pro) metabolism, with differential expression patterns in the two genotypes. Under chilling stress, glutathione metabolism-related DEGs, 6-phosphogluconate dehydrogenase (G6PDH), glutathione peroxidase (GPX), and glutathione s-transferase (GST) were upregulated in "162," and GSH conjugates (L-gamma-glutamyl-L-amino acid and L-glutamate) were accumulated. Additionally, "162" showed upregulation of DEGs encoding ornithine decarboxylase, Pro dehydrogenase, aspartate aminotransferase, pyrroline-5-carboxylate reductase, and spermidine synthase and increased Arg, ornithine, and Pro. Furthermore, the transcription factors (TFs), MYB, ERF, MADS-box, and bZIP were significantly upregulated, suggesting their crucial role in chilling tolerance of melon. CONCLUSIONS These findings elucidate the molecular response mechanism to chilling stress in melon and provide insights for breeding chilling-tolerant melon.
Collapse
Grants
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- Shanghai Agricultural Science (2024) No.1 Shanghai Melon and Fruit Industry Technology System
- (2022),020 Excellent Team of Shanghai Academy of Agricultural Sciences, watermelon and Melon Innovation Team
- (2022),020 Excellent Team of Shanghai Academy of Agricultural Sciences, watermelon and Melon Innovation Team
- (2022),020 Excellent Team of Shanghai Academy of Agricultural Sciences, watermelon and Melon Innovation Team
- (2022),020 Excellent Team of Shanghai Academy of Agricultural Sciences, watermelon and Melon Innovation Team
- (2022),020 Excellent Team of Shanghai Academy of Agricultural Sciences, watermelon and Melon Innovation Team
Collapse
Affiliation(s)
- Qiannan Diao
- Horticultural Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China
| | - Shoubo Tian
- Horticultural Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China
| | - Yanyan Cao
- Horticultural Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China
| | - Dongwei Yao
- Horticultural Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China
| | - Hongwei Fan
- Shanghai Agriculture Technology Extension and Service Center, Shanghai, 201103, China
| | - Xuejun Jiang
- Shanghai Jinshan Agriculture Technology Extension and Service Center, Shanghai, 201599, China
| | - Wenxian Zhang
- Shanghai Agriculture Technology Extension and Service Center, Shanghai, 201103, China.
| | - Yongping Zhang
- Horticultural Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
4
|
Shahwar D, Khan Z, Park Y. Molecular Markers for Marker-Assisted Breeding for Biotic and Abiotic Stress in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2024; 25:6307. [PMID: 38928017 PMCID: PMC11204097 DOI: 10.3390/ijms25126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Melon (Cucumis melo L.) is a globally grown crop renowned for its juice and flavor. Despite growth in production, the melon industry faces several challenges owing to a wide range of biotic and abiotic stresses throughout the growth and development of melon. The aim of the review article is to consolidate current knowledge on the genetic mechanism of both biotic and abiotic stress in melon, facilitating the development of robust, disease-resistant melon varieties. A comprehensive literature review was performed, focusing on recent genetic and molecular advancements related to biotic and abiotic stress responses in melons. The review emphasizes the identification and analysis of quantitative trait loci (QTLs), functional genes, and molecular markers in two sections. The initial section provides a comprehensive summary of the QTLs and major and minor functional genes, and the establishment of molecular markers associated with biotic (viral, bacterial, and fungal pathogens, and nematodes) and abiotic stress (cold/chilling, drought, salt, and toxic compounds). The latter section briefly outlines the molecular markers employed to facilitate marker-assisted backcrossing (MABC) and identify cultivars resistant to biotic and abiotic stressors, emphasizing their relevance in strategic marker-assisted melon breeding. These insights could guide the incorporation of specific traits, culminating in developing novel varieties, equipped to withstand diseases and environmental stresses by targeted breeding, that meet both consumer preferences and the needs of melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
5
|
Lang X, Zhao X, Zhao J, Ren T, Nie L, Zhao W. MicroRNA Profiling Revealed the Mechanism of Enhanced Cold Resistance by Grafting in Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1016. [PMID: 38611545 PMCID: PMC11013280 DOI: 10.3390/plants13071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Grafting is widely used to improve the resistance to abiotic stresses in cucurbit plants, but the effect and molecular mechanism of grafting on cold stress are still unknown in melon. In this study, phenotypic characteristics, physiological indexes, small-RNA sequencing and expression analyses were performed on grafted plants with pumpkin rootstock (PG) and self-grafted plants (SG) to explore the mechanism of changed cold tolerance by grafting in melon. Compared with SG plants, the cold tolerance was obviously enhanced, the malondialdehyde (MDA) content was significantly decreased and the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD) were significantly increased in PG plants. Depend on differentially expressed miRNA (DEM) identification and expression pattern analyses, cme-miR156b, cme-miR156f and chr07_30026 were thought to play a key role in enhancing low-temperature resistance resulting from grafting. Subsequently, 24, 37 and 17 target genes of cme-miR156b, cme-miR156f and chr07_30026 were respectively predicted, and 21 target genes were co-regulated by cme-miR156b and cme-miR156f. Among these 57 unique target genes, the putative promoter of 13 target genes contained the low-temperature responsive (LTR) cis-acting element. The results of qRT-PCR indicated that six target genes (MELO3C002370, MELO3C009217, MELO3C018972, MELO3C016713, MELO3C012858 and MELO3C000732) displayed the opposite expression pattern to their corresponding miRNAs. Furthermore, MELO3C002370, MELO3C016713 and MELO3C012858 were significantly downregulated in cold-resistant cultivars and upregulated in cold-sensitive varieties after cold stimulus, and they acted as the key negative regulators of low-temperature response in melon. This study revealed three key miRNAs and three putative target genes involved in the cold tolerance of melon and provided a molecular basis underlying how grafting improved the low-temperature resistance of melon plants.
Collapse
Affiliation(s)
- Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| |
Collapse
|
6
|
Liu J, Zhang C, Sun H, Zang Y, Meng X, Zhai H, Chen Q, Li C. A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement. HORTICULTURE RESEARCH 2024; 11:uhae055. [PMID: 38659442 PMCID: PMC11040208 DOI: 10.1093/hr/uhae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Saline-alkaline stress is a worldwide problem that threatens the growth and yield of crops. However, how crops adapt to saline-alkaline stress remains less studied. Here we show that saline-alkaline tolerance was compromised during tomato domestication and improvement, and a natural variation in the promoter of SlSCaBP8, an EF-hand Ca2+ binding protein, contributed to the loss of saline-alkaline tolerance during tomato improvement. The biochemical and genetic data showed that SlSCaBP8 is a positive regulator of saline-alkaline tolerance in tomato. The introgression line Pi-75, derived from a cross between wild Solanum pimpinellifolium LA1589 and cultivar E6203, containing the SlSCaBP8LA1589 locus, showed stronger saline-alkaline tolerance than E6203. Pi-75 and LA1589 also showed enhanced saline-alkaline-induced SlSCaBP8 expression than that of E6203. By sequence analysis, a natural variation was found in the promoter of SlSCaBP8 and the accessions with the wild haplotype showed enhanced saline-alkaline tolerance compared with the cultivar haplotype. Our studies clarify the mechanism of saline-alkaline tolerance conferred by SlSCaBP8 and provide an important natural variation in the promoter of SlSCaBP8 for tomato breeding.
Collapse
Affiliation(s)
- Jian Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chi Zhang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Heyao Sun
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yinqiang Zang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xianwen Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qian Chen
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chuanyou Li
- College of Life Science, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|