1
|
Kuang Y, Wu X, Liu M, Yan F, Ma D, Zhou X, Zhou H, Ren B. Developing glycosylase-based T-to-G and C-to-K base editors in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2358-2360. [PMID: 40112153 PMCID: PMC12120902 DOI: 10.1111/pbi.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Yongjie Kuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Meijie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouHubeiChina
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaHainanChina
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouHubeiChina
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiangChina
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaHainanChina
| | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
2
|
Jiang B, An Z, Niu L, Qin D. Precise genome editing process and its applications in plants driven by AI. Funct Integr Genomics 2025; 25:109. [PMID: 40413357 DOI: 10.1007/s10142-025-01619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Genome editing technologies have emerged as the keystone of biotechnological research, enabling precise gene modification. The field has evolved rapidly through revolutionary advancements, transitioning from early explorations to the breakthrough of the CRISPR-Cas system. The emergence of the CRISPR-Cas system represents a huge leap in genome editing, prompting the development of advanced tools such as base and prime editors, thereby enhancing precise genomic engineering capabilities. The rapid integration of AI across disciplines is now driving another transformative phase in genome editing, streamlining workflows and enhancing precision. The application prospects of genome editing technology are extensive, particularly in plant breeding, where it has already presented unparalleled opportunities for improving plant traits. Here, we review early genome editing technologies, including meganucleases, ZFNs, TALENs, and CRISPR-Cas systems. We also provide a detailed introduction to next-generation editing tools-such as base editors and prime editors-and their latest applications in plants. At the same time, we summarize and prospect the cutting-edge developments and future trends of genome editing technologies in combination with the rapidly rising AI technology, including optimizing editing systems, predicting the efficiency of editing sites and designing editing strategies. We are convinced that as these technologies progress and their utilization expands, they will provide pioneering solutions to global challenges, ushering in an era of health, prosperity, and sustainability.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeyu An
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Linlin Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Debin Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Jiang Y, Xiao Z, Luo Z, Zhou S, Tong C, Jin S, Liu X, Qin R, Xu R, Pan L, Li J, Wei P. Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants. Trends Biotechnol 2025:S0167-7799(25)00086-1. [PMID: 40187931 DOI: 10.1016/j.tibtech.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.
Collapse
Affiliation(s)
- Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Suhuai Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Chaoyun Tong
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Shan Jin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Ruiying Qin
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Rongfang Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Juan Li
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
4
|
Jiang C, Li Y, Wang R, Sun X, Zhang Y, Zhang Q. Development and optimization of base editors and its application in crops. Biochem Biophys Res Commun 2024; 739:150942. [PMID: 39547118 DOI: 10.1016/j.bbrc.2024.150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Genome editing technologies hold significant potential for targeted mutagenesis in crop development, aligning with evolving agricultural needs. Point mutations, or single nucleotide polymorphisms (SNPs), define key agronomic traits in various crop species and play a pivotal role. The implementation of single nucleotide variations through genome editing-based base editing offers substantial promise in expediting crop improvement by inducing advantageous trait variations. Among many genome editing techniques, base editing stands out as an advanced next-generation technology, evolved from the CRISPR/Cas9 system.Base editing, a recent advancement in genome editing, enables precise DNA modification without the risks associated with double-strand breaks. Base editors, designed as precise genome editing tools, enable the direct and irreversible conversion of specific target bases. Base editors consist of catalytically active CRISPR-Cas9 domains, including Cas9 variants, fused with domains like cytidine deaminase, adenine deaminase, or reverse transcriptase. These fusion proteins enable the introduction of specific point mutations in target genomic regions. Currently developed are cytidine base editors (CBEs), mutating C to T; adenine base editors (ABEs), changing A to G; and prime editors (PEs), enabling arbitrary base conversions, precise insertions, and deletions. In this review, the research, development, and progress of various base editing systems, along with their potential applications in crop improvement, were intended to be summarized. The limitations of this technology will also be discussed. Finally, an outlook on the future of base editors will be provided.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Zhou L, Yin X, Yan Z, Jiang J, Tian Y, Gao R, Geng C, Li X. The Naturally Occurring Amino Acid Substitution in the VPg α1-α2 Loop Breaks eIF4E-Mediated Resistance to PRSV by Enabling VPg to Re-Hijack Another eIF4E Isoform eIF(iso)4E in Watermelon. MOLECULAR PLANT PATHOLOGY 2024; 25:e70033. [PMID: 39587435 PMCID: PMC11588673 DOI: 10.1111/mpp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Plant resistance, which acts as a selective pressure that affects viral population fitness, leads to the emergence of resistance-breaking virus strains. Most recessive resistance to potyviruses is related to the mutation of eukaryotic translation initiation factor 4E (eIF4E) or its isoforms that break their interactions with the viral genome-linked protein (VPg). In this study, we found that the VPg α1-α2 loop, which is essential for binding eIF4E, is the most variable domain of papaya ringspot virus (PRSV) VPg. PRSV VPg with the naturally occurring amino acid substitution of K105Q or E108G in the α1-α2 loop fails to interact with watermelon (Citrullus lanatus) eIF4E but interacts with watermelon eIF(iso)4E instead. Moreover, PRSV carrying these mutations can break the eIF4E-mediated resistance to PRSV in watermelon accession PI 244019. We further revealed that watermelon eIF(iso)4E with the amino acid substitutions of DNQS to GAAA in the cap-binding pocket could not interact with PRSV VPg with natural amino acid substitution of K105Q or E108G. Therefore, our finding provides a precise target for engineering watermelon germplasm resistant to resistance-breaking PRSV isolates.
Collapse
Affiliation(s)
- Ling‐Xi Zhou
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Xiao Yin
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant ProtectionShandong Academy of Agricultural SciencesJi'nanChina
| | - Zhi‐Yong Yan
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Jun Jiang
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Yan‐Ping Tian
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Rui Gao
- Shandong Institute of PomologyTai'anChina
| | - Chao Geng
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Xiang‐Dong Li
- Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant ProtectionShandong Academy of Agricultural SciencesJi'nanChina
| |
Collapse
|
6
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Wang D, Zhu T, Liu C, Chen Y, Tian S, Tian C, Gao P, Liu S, Liu M, Wang J, Zhang X, Luan F, Yuan L. Development of ABE and AKBE base editors in watermelon. HORTICULTURE RESEARCH 2024; 11:uhae123. [PMID: 38919550 PMCID: PMC11197295 DOI: 10.1093/hr/uhae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Dong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tao Zhu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunyu Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yani Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunhui Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, China
| | - Man Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|