1
|
Yu W, Luo H, Yang J, Zhang S, Jiang H, Zhao X, Hui X, Sun D, Li L, Wei XQ, Lonardi S, Pan W. Comprehensive assessment of 11 de novo HiFi assemblers on complex eukaryotic genomes and metagenomes. Genome Res 2024; 34:326-340. [PMID: 38428994 PMCID: PMC10984382 DOI: 10.1101/gr.278232.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Pacific Biosciences (PacBio) HiFi sequencing technology generates long reads (>10 kbp) with very high accuracy (<0.01% sequencing error). Although several de novo assembly tools are available for HiFi reads, there are no comprehensive studies on the evaluation of these assemblers. We evaluated the performance of 11 de novo HiFi assemblers on (1) real data for three eukaryotic genomes; (2) 34 synthetic data sets with different ploidy, sequencing coverage levels, heterozygosity rates, and sequencing error rates; (3) one real metagenomic data set; and (4) five synthetic metagenomic data sets with different composition abundance and heterozygosity rates. The 11 assemblers were evaluated using quality assessment tool (QUAST) and benchmarking universal single-copy ortholog (BUSCO). We also used several additional criteria, namely, completion rate, single-copy completion rate, duplicated completion rate, average proportion of largest category, average distance difference, quality value, run-time, and memory utilization. Results show that hifiasm and hifiasm-meta should be the first choice for assembling eukaryotic genomes and metagenomes with HiFi data. We performed a comprehensive benchmarking study of commonly used assemblers on complex eukaryotic genomes and metagenomes. Our study will help the research community to choose the most appropriate assembler for their data and identify possible improvements in assembly algorithms.
Collapse
Affiliation(s)
- Wenjuan Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haohui Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengchen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Heling Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianjia Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingqi Hui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Da Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China
| | - Xiu-Qing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China;
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA;
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| |
Collapse
|