1
|
Liu L, Jiang X, Liu Z, Chen J, Yang C, Chen K, Yang X, Cai J, Ren J. Oocyte degeneration in a cohort adversely affects clinical outcomes in conventional IVF cycles: a propensity score matching study. Front Endocrinol (Lausanne) 2023; 14:1164371. [PMID: 37274329 PMCID: PMC10235780 DOI: 10.3389/fendo.2023.1164371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Background Oocyte degeneration was mostly described in intracytoplasmic sperm injection (ICSI) cycles; there is no report showing the relationship between oocyte degeneration and clinical outcomes in conventional in vitro fertilization (IVF) cycles. This retrospective study using the propensity score (PS) matching method aimed to explore whether the presence of oocyte degeneration in conventional IVF cycles would affect the sibling embryo development potential and clinical outcomes. Methods Patients with at least one oocyte degenerated after short-term insemination and stripping were defined as the degeneration (DEG) group, while patients with no oocyte degenerated were defined as the non-degeneration (NONDEG) group. The PS matching method was used to control for potential confounding factors, and a multivariate logistic regression analysis was made to evaluate whether the presence of oocyte degeneration would affect the cumulative live birth rate (CLBR). Results After PS matching, basic characteristics were similar between the two groups, oocyte yield was significantly higher in the DEG group than the NON-DEG group (P < 0.05), mature oocyte number, 2 pronuclear (2PN) embryo number, 2PN embryo clearage rate, "slow" embryo number, "accelerated" embryo number, rate of cycles with total day 3 embryo extended culture, number of frozen embryo transfer (FET) cycles, transferred embryo stage, transferred embryo number, and live birth rate in fresh embryo transfer cycles were all similar between the two groups (P > 0.05), but the 2PN fertilization rate, available embryo number, high-quality embryo number, "normal" embryo number, frozen embryo number, blastocyst formation rate, and no available embryo cycle rate were all significantly lower in the DEG group than the NON-DEG group (P < 0.05). The cumulative live birth rate was also significantly lower in the DEG group than in the NON-DEG group (70.2% vs. 74.0%, P = 0.0019). Multivariate logistic regression analysis further demonstrated that the presence of oocyte degeneration in conventional IVF cycles adversely affects the CLBR both before (OR = 0.83, 95% CI: 0.75-0.92) and after (OR = 0.82, 95% CI: 0.72-0.93) PS matching. Conclusion Our findings together revealed that the presence of oocyte degeneration in a cohort of oocytes may adversely affect subsequent embryo development potential and clinical outcomes in conventional IVF cycles.
Collapse
Affiliation(s)
- Lanlan Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
- Medical College, Xiamen University, Xiamen, China
| | - Xiaoming Jiang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Zhenfang Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Jinghua Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Chao Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Kaijie Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Xiaolian Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | - Jiali Cai
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
- Medical College, Xiamen University, Xiamen, China
| | - Jianzhi Ren
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Eleftheriou K, Peter A, Fedorenko I, Schmidt K, Wossidlo M, Arand J. A transition phase in late mouse oogenesis impacts DNA methylation of the early embryo. Commun Biol 2022; 5:1047. [PMID: 36184676 PMCID: PMC9527251 DOI: 10.1038/s42003-022-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
A well-orchestrated program of oocyte growth and differentiation results in a developmentally competent oocyte. In late oogenesis, germinal vesicle oocytes (GVOs) undergo chromatin remodeling accompanied by transcriptional silencing from an NSN (non-surrounded nucleolus) to an SN (surrounded nucleolus) chromatin state. By analyzing different cytoplasmic and nuclear characteristics, our results indicate that murine NSN-GVOs transition via an intermediate stage into SN-GVOs in vivo. Interestingly, this transition can also be observed ex vivo, including most characteristics seen in vivo, which allows to analyze this transition process in more detail. The nuclear rearrangements during the transition are accompanied by changes in DNA methylation and Tet enzyme-catalyzed DNA modifications. Early parthenogenetic embryos, derived from NSN-GVOs, show lower DNA methylation levels than SN-derived embryos. Together, our data suggest that a successful NSN-SN transition in oogenesis including proper DNA methylation remodeling is important for the establishment of a developmentally competent oocyte for the beginning of life.
Collapse
Affiliation(s)
- Kristeli Eleftheriou
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Antonia Peter
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ivanna Fedorenko
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katy Schmidt
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Mark Wossidlo
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Julia Arand
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
3
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
4
|
Wang M, Yang Q, Liu J, Hu J, Li D, Ren X, Xi Q, Zhu L, Jin L. GVBD rate is an independent predictor for pregnancy in ICSI patients with surplus immature oocytes. Front Endocrinol (Lausanne) 2022; 13:1022044. [PMID: 36699025 PMCID: PMC9868552 DOI: 10.3389/fendo.2022.1022044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION It was reported that there were still up to 30% immature retrieved oocyte at germinal vesicle (GV) or metaphase I (MI) stage. Whether the spontaneous maturity competency of immature oocytes associated to the clinical outcome of in vitro fertilization (IVF) cycles remains unclear and unexplored. This study aimed to investigate how the oocyte developmental parameters in in vitro maturation (IVM) affect clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles. METHODS This retrospective cohort study included couples undergoing ICSI in a university-affiliated hospital. Surplus immature oocytes during ICSI were collected and cultured in vitro. The numbers of germinal vesicle (GV) oocytes undergoing GV breakdown (GVBD) and polar body 1 extrusion within 24 h culture were recorded. The main outcome measurements were demographic baselines and oocyte developmental parameters in IVM associated with pregnancy outcomes. RESULTS A total of 191 couples were included with an overall GVBD rate of 63.7% (327/513) and oocyte maturation rate of 46.8% (240/513). 53.4% (102/191) of them had embryos transferred freshly, which originated from metaphase II oocytes that matured spontaneously in vivo, and 60.8% (62/102) got pregnant. Among factors with a P-value < 0.2 in univariate logistic regression analyses of pregnancy correlation, GVBD rate (OR 3.220, 95% CI 1.060-9.782, P=0.039) and progesterone level on human chorionic gonadotropin (HCG) day (OR 0.231, 95% CI 0.056-0.949, P=0.042) remained significant in the multivariate model. The area under the curve (AUC) of the predictive nomogram was 0.729 (95% CI 0.632-0.826) with an acceptable calibration. Moreover, decision curve analyses illustrated the superior overall net benefit of models that included the GVBD rate in clinical decisions within a wide range of threshold probabilities. CONCLUSION In conclusion, GVBD rate and progesterone level on HCG day may be associated with pregnancy outcomes in infertile couples during the regular ICSI procedure. An elevated GVBD rate within 24 h may greatly increase the likelihood of pregnancy in infertile couples during ICSI. This preliminary study may optimize clinical pregnancy prediction, which provides support in decision-making in clinical practice.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiyu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lei Jin,
| |
Collapse
|
5
|
Arand J, Reijo Pera RA, Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem Cell Biol 2021; 156:197-207. [PMID: 34179999 PMCID: PMC8460514 DOI: 10.1007/s00418-021-02008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Human preimplantation development is characterized by low developmental rates that are poorly understood. Early mammalian embryogenesis is characterized by a major phase of epigenetic reprogramming, which involves global DNA methylation changes and activity of TET enzymes; the importance of DNA methylation reprogramming for successful human preimplantation development has not been investigated. Here, we analyzed early human embryos for dynamic changes in 5-methylcytosine and its oxidized derivatives generated by TET enzymes. We observed that 5-methylcytosine and 5-hydroxymethylcytosine show similar, albeit less pronounced, asymmetry between the parental pronuclei of human zygotes relative to mouse zygotes. Notably, we detected low levels of 5-formylcytosine and 5-carboxylcytosine, with no apparent difference in maternal or paternal pronuclei of human zygotes. Analysis of later human preimplantation stages revealed a mosaic pattern of DNA 5C modifications similar to those of the mouse and other mammals. Strikingly, using noninvasive time-lapse imaging and well-defined cell cycle parameters, we analyzed normally and abnormally developing human four-cell embryos for global reprogramming of DNA methylation and detected lower 5-methylcytosine and 5-hydroxymethylcytosine levels in normal embryos compared to abnormal embryos. In conclusion, our results suggest that DNA methylation reprogramming is conserved in humans, with human-specific dynamics and extent. Furthermore, abnormalities in the four-cell-specific DNA methylome in early human embryogenesis are associated with abnormal development, highlighting an essential role of epigenetic reprogramming for successful human embryogenesis. Further research should identify the underlying genomic regions and cause of abnormal DNA methylation reprogramming in early human embryos.
Collapse
Affiliation(s)
- Julia Arand
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Renee A Reijo Pera
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.,McLaughlin Research Institute, Great Falls, MT, 59405, USA
| | - Mark Wossidlo
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria. .,Department of Genetics, Stanford University, Stanford, CA, 94305, USA. .,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|