1
|
Zhou Y, Pei S, Qiu G, Zhang J, Guo H, Cui S, Liu Z, Zhang D. Taurine is essential for mouse uterine luminal fluid resorption during implantation window via the SCNN1A and AQP8 signaling†. Biol Reprod 2025; 112:140-155. [PMID: 39428112 DOI: 10.1093/biolre/ioae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Uterine fluid homeostasis during peri-implantation is crucial for successful embryo implantation. Taurine (Tau) plays a crucial role in regulating osmotic pressure and ion transport. However, the precise mechanisms underlying Tau-mediated regulation of uterine fluid homeostasis during peri-implantation in mice remain unclear. In this study, we generated a Tau-deficient mouse model by administering Tau-free diet to Csad knockout (Csad-/-) mice to block endogenous Tau synthesis and exogenous Tau absorption (Csad-/--Tau free). Our findings demonstrated that Csad-/--Tau free mice with diminished level of Tau exhibited decreased rates of embryo implantation and impaired fertility. Further analysis revealed that the expression of Scnn1a was down-regulated during the implantation window, while Aqp8 was upregulated in Csad-/--Tau free mice, leading to uterine luminal fluid retention and defects in luminal closure, resulting in failed embryo implantation. Additionally, it was also found that E2 inhibited uterine Csad expression and Tau synthesis, while P4 promoted them. Therefore, our findings suggest that ovarian steroid hormones regulate Csad expression and Tau synthesis, thereby affecting release and resorption of uterine luminal fluid, ultimately impacting embryo implantation success.
Collapse
Affiliation(s)
- Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Shaona Pei
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
2
|
Pang F, Sheng Y, Gao L, Rushdi HE, Loor JJ, Tian Q, Liu S. Seminal plasma metabolomics and sperm lipidomics profiles of bull semen with different total progressive motile sperm count. J Anim Sci 2025; 103:skaf012. [PMID: 39887007 PMCID: PMC11914886 DOI: 10.1093/jas/skaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Total progressive motile sperm count (TPMSC) is a reliable index of fecundity evaluation of bull semen. It is an important determinant of frozen semen yield and conception rate of females artificially inseminated. Seminal plasma metabolites and sperm lipids are closely related to sperm survival and motility, but their relationship with TPMSC is not well known. In the present study, Simmental bulls with higher (H, n = 6) or lower (L, n = 6) TPMSC (P < 0.01) were selected from a cohort of 100 animals aged 2 to 5 yr based on semen quality. Analysis of semen quality and biochemical markers of seminal plasma revealed that H bulls had greater ejaculate volume (P < 0.05), sperm motility, plasma membrane integrity rate (P < 0.01), seminal plasma neutral α-glucosidase (P < 0.05), alkaline phosphatase, acid phosphatase, cortisol and phosphatidylcholine (P < 0.01), and lower sperm malformation rate (P < 0.05) and reactive oxygen species (P < 0.01). Semen metabolites and sperm liposome profiles of H and L groups were compared using LC-MS/MS analysis. A total of 120 differentially abundant metabolites (VIP > 1; P < 0.05) and 59 differentially abundant lipids (VIP > 1; P < 0.05) were identified between H and L groups. Oxidative stress, sperm motility, and sperm plasma membrane integrity were among the enriched biological pathways. Cyclic ADP-ribose (cADPR), up-regulated in H bulls, is associated with energy for sperm motility and maintenance of membrane stability. Thymidineglycol (Tg), levanbiose, thymidine (Thd), and CE (3M5) were down-regulated in H bulls and may have negatively affected sperm motility. Correlation analyses revealed that TPMSC and sperm motility were significantly positively correlated with cADPR, while Tg, Levanbiose, Thd, and CE (3M5) were significantly negatively correlated with TPMSC and sperm motility. Thus, we speculate that these molecules may be exploited as potential biomarkers for non-invasive evaluation of TPMSC in bull semen.
Collapse
Affiliation(s)
- Fanglin Pang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuke Sheng
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - LiuTao Gao
- Henan Dingyuan Cattle Breeding Co., Ltd, Zhengzhou, China
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Juan J Loor
- Department of Animal Science, Univ Illinois, Mammalian Nutr Physiol Genom, Urbana, IL 61801, USA
| | - QuanZhao Tian
- Henan Dingyuan Cattle Breeding Co., Ltd, Zhengzhou, China
| | - Shenhe Liu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Xiong YW, Zhu HL, Zhang J, Geng H, Tan LL, Zheng XM, Li H, Fan LL, Wang XR, Zhang XD, Wang KW, Chang W, Zhang YF, Yuan Z, Duan ZL, Cao YX, He XJ, Xu DX, Wang H. Multigenerational paternal obesity enhances the susceptibility to male subfertility in offspring via Wt1 N6-methyladenosine modification. Nat Commun 2024; 15:1353. [PMID: 38355624 PMCID: PMC10866985 DOI: 10.1038/s41467-024-45675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Run Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zong-Liu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiao-Jin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| |
Collapse
|
4
|
Adedara IA, Ileola-Gold AV, Adelaja UA, Njoku CA, Ikeji CN, Owoeye O, Farombi EO. Exogenous taurine administration abates reproductive dysfunction in male rats exposed to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY 2024; 39:61-74. [PMID: 37638810 DOI: 10.1002/tox.23945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
The broad contemporary applications of silver nanoparticles (AgNPs) have been associated with various toxicities including reproductive toxicity. Taurine is well acknowledged for its potent pharmacological role in numerous disease models and chemically-mediated toxicity. We investigated the effect of taurine on AgNPs-induced reproductive toxicity in male rats. The animals were intraperitoneally injected with AgNPs (200 μg/kg) alone or co-administered with taurine at 50 and 100 mg/kg for 21 successive days. Exogenous taurine administration significantly abated AgNPs-induced oxidative injury by decreasing the levels of oxidative stress indices while boosting antioxidant enzymes activities and glutathione level in the hypothalamus, testes and epididymis of exposed animals. Taurine administration alleviated AgNPs-induced inflammatory response and caspase-3 activity, an apoptotic biomarker. Moreover, taurine significantly improved spermiogram, reproductive hormones and the marker enzymes of testicular function in AgNPs-treated animals. The ameliorative effect of taurine on pathological lesions induced by AgNPs in the exposed animals was substantiated by histopathological data. This study provides the first mechanistic evidence that taurine supplementation affords therapeutic effect against reproductive dysfunction associated with AgNPs exposure in male rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomitan V Ileola-Gold
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uthman A Adelaja
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chiwueze A Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
6
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Ant-Neointimal Formation Effects of SLC6A6 in Preventing Vascular Smooth Muscle Cell Proliferation and Migration via Wnt/β-Catenin Signaling. Int J Mol Sci 2023; 24:ijms24033018. [PMID: 36769341 PMCID: PMC9917619 DOI: 10.3390/ijms24033018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role in the pathogenesis of vascular remolding, such as atherosclerosis and restenosis. Solute carrier family 6 member 6 (SLC6A6) is a transmembrane transporter that maintains a variety of physiological functions and is highly expressed in VSMCs. However, its role on VSMCs during neointimal formation remains unknown. In this study, mRNA and protein levels of SLC6A6 were examined using models of VSMC phenotype switching in vivo and in vitro and human artery samples with or without atherosclerosis. SLC6A6 gain- and loss-of-function approaches were performed by adenovirus infection or small interfering RNA (siRNA) transfection, respectively. Reactive oxygen species (ROS), proliferation, migration, and phenotype-related proteins of VSMCs were measured. Vascular stenosis rate and related genes were assessed in a rat vascular balloon injury model overexpressing SLC6A6. SLC6A6 was downregulated in dedifferentiated VSMCs, atherosclerotic vascular tissues, and injured vascular tissues. SLC6A6 suppressed VSMC proliferation and migration, while increasing contractile VSMC proteins. Mechanistically, SLC6A6 overexpression reduced ROS production and inhibited the Wnt/β-catenin pathway. Furthermore, SLC6A6 overexpression suppressed neointimal formation in vivo. Collectively, overexpression of SLC6A6 suppresses neointimal formation by inhibiting VSMC proliferation and migration via Wnt/β-catenin signaling and maintaining the VSMC contractile phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Leng Ni
- Correspondence: (L.N.); (C.L.); Tel.: +86-010-69152501 (L.N.); +86-010-69152500 (C.L.)
| | - Changwei Liu
- Correspondence: (L.N.); (C.L.); Tel.: +86-010-69152501 (L.N.); +86-010-69152500 (C.L.)
| |
Collapse
|
7
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|