1
|
Furtado CLM, Soares MR, Verruma CG, de Oliveira Gennaro FG, da Silva LECM, Ferriani RA, Dos Reis RM. BCORL1, POF1B, and USP9X copy number variation in women with idiopathic diminished ovarian reserve. J Assist Reprod Genet 2024; 41:2279-2288. [PMID: 38995507 PMCID: PMC11405560 DOI: 10.1007/s10815-024-03185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To analyze the copy number variation (CNV) in the X-linked genes BCORL1, POF1B, and USP9X in idiopathic diminished ovarian reserve (DOR). METHODS This case-control study included 47 women, 26 with DOR and 21 in the control group. Age, weight, height, BMI, and FSH level were evaluated, as well as antral follicle count (AFC), oocyte retrieval after controlled ovarian stimulation, and metaphase II (MII) oocytes. The CNVs of BCORL1, USP9X, and POF1B genes were measured by quantitative real time PCR (qPCR) using two reference genes, the HPRT1 (X-linked) and MFN2 (autosomal). Protein-protein interaction network and functional enrichment analysis were performed using the STRING database. RESULTS The mean age was 36.52 ± 4.75 in DOR women and 35.38 ± 4.14 in control. Anthropometric measures did not differ between the DOR and control groups. DOR women presented higher FSH (p = 0.0025) and lower AFC (p < .0001), oocyte retrieval after COS (p = 0.0004), and MII oocytes (p < .0001) when compared to the control group. BCORL1 and POF1B did not differ in copy number between DOR and control. However, DOR women had more copies of USP9X than the control group (p = 0.028). CONCLUSION The increase in the number of copies of the USP9X gene may lead to overexpression in idiopathic DOR and contribute to altered folliculogenesis and oocyte retrieval.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Medical Sciences, Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil.
| | - Murilo Racy Soares
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flavia Gaona de Oliveira Gennaro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Bestetti I, Barbieri C, Sironi A, Specchia V, Yatsenko SA, De Donno MD, Caslini C, Gentilini D, Crippa M, Larizza L, Marozzi A, Rajkovic A, Toniolo D, Bozzetti MP, Finelli P. Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency. Hum Reprod 2021; 36:2975-2991. [PMID: 34480478 PMCID: PMC8523209 DOI: 10.1093/humrep/deab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its prominent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility. MAIN RESULTS AND THE ROLE OF CHANCE The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility. LARGE SCALE DATA The datasets for the Italian cohort generated during the current study are publicly available at ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/): accession numbers SCV001364312 to SCV001364375. LIMITATIONS, REASONS FOR CAUTION This is a targeted WES analysis hunting variants in candidate genes previously identified by different genomic approaches. For most of the investigated sporadic cases, we could not track the parental inheritance, due to unavailability of the parents’ DNA samples; in addition, we might have overlooked additional rare variants in novel candidate POI genes extracted from the exome data. On the contrary, we might have considered some inherited variants whose clinical significance is uncertain and might not be causative for the patients’ phenotype. Additionally, as regards the Drosophila model, it will be extremely important in the future to have more mutants or RNAi strains available for each candidate gene in order to validate their role in POI pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The genomic, statistical, comparative and functional approaches integrated in our study convincingly support the extremely heterogeneous oligogenic nature of POI, and confirm the maintenance across the evolution of some key genes safeguarding fertility and successful reproduction. Two principal classes of genes were identified: (i) genes primarily involved in meiosis, namely in synaptonemal complex formation, asymmetric division and oocyte maturation and (ii) genes safeguarding cell maintenance (piRNA and DNA repair pathways). STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C621_2016 and 08C924_2019) provided to IRCCS Istituto Auxologico Italiano, and by ‘Piano Sostegno alla Ricerca’ (PSR2020_FINELLI_LINEA_B) provided by the University of Milan; M.P.B. was supported by Telethon-Italy (grant number GG14181). There are no conflicts of interest.
Collapse
Affiliation(s)
- I Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - C Barbieri
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - A Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M D De Donno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - C Caslini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - D Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - L Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - A Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - A Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San, Francisco, San Francisco, CA, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - D Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - M P Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - P Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| |
Collapse
|
3
|
Bestetti I, Castronovo C, Sironi A, Caslini C, Sala C, Rossetti R, Crippa M, Ferrari I, Pistocchi A, Toniolo D, Persani L, Marozzi A, Finelli P. High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum Reprod 2020; 34:574-583. [PMID: 30689869 PMCID: PMC6389867 DOI: 10.1093/humrep/dey389] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Can high resolution array-CGH analysis on a cohort of women showing a primary ovarian insufficiency (POI) phenotype in young age identify copy number variants (CNVs) with a deleterious effect on ovarian function? SUMMARY ANSWER This approach has proved effective to clarify the role of CNVs in POI pathogenesis and to better unveil both novel candidate genes and pathogenic mechanisms. WHAT IS KNOWN ALREADY POI describes the progression toward the cessation of ovarian function before the age of 40 years. Genetic causes are highly heterogeneous and despite several genes being associated with ovarian failure, most of genetic basis of POI still needs to be elucidated. STUDY DESIGN, SIZE, DURATION The current study included 67 46,XX patients with early onset POI (<19 years) and 134 control females recruited between 2012 and 2016 at the Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano. PARTICIPANTS/MATERIALS, SETTING, METHODS High resolution array-CGH analysis was carried out on POI patients’ DNA. Results of patients and female controls were analyzed to search for rare CNVs. All variants were validated and subjected to a gene content analysis and disease gene prioritization based on the present literature to find out new ovary candidate genes. Case-control study with statistical analysis was carried out to validate our approach and evaluate any ovary CNVs/gene enrichment. Characterization of particular CNVs with molecular and functional studies was performed to assess their pathogenic involvement in POI. MAIN RESULTS AND THE ROLE OF CHANCE We identified 37 ovary-related CNVs involving 44 genes with a role in ovary in 32 patients. All except one of the selected CNVs were not observed in the control group. Possible involvement of the CNVs in POI pathogenesis was further corroborated by a case-control analysis that showed a significant enrichment of ovary-related CNVs/genes in patients (P = 0.0132; P = 0.0126). Disease gene prioritization identified both previously reported POI genes (e.g. BMP15, DIAPH2, CPEB1, BNC1) and new candidates supported by transcript and functional studies, such as TP63 with a role in oocyte genomic integrity and VLDLR which is involved in steroidogenesis. LARGE SCALE DATA ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/); accession numbers SCV000787656 to SCV000787743. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis for almost all of the CNVs identified. Inheritance studies of CNVs in some non-familial sporadic cases was not performed as the parents’ DNA samples were not available. Addionally, RT-qPCR analyses were carried out in few cases as RNA samples were not always available and the genes were not expressed in blood. WIDER IMPLICATIONS OF THE FINDINGS Our array-CGH screening turned out to be efficient in identifying different CNVs possibly implicated in disease onset, thus supporting the extremely wide genetic heterogeneity of POI. Since almost 50% of cases are negative rare ovary-related CNVs, array-CGH together with next generation sequencing might represent the most suitable approach to obtain a comprehensive genetic characterization of POI patients. STUDY FUNDING/COMPETING INTEREST(S) Supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C203_2012) and ‘Ricerca Finalizzata’ (GR-2011-02351636, BIOEFFECT) to IRCCS Istituto Auxologico Italiano.
Collapse
Affiliation(s)
- I Bestetti
- Istituto Auxologico Italiano, IRCCS, Lab of Medical Cytogenetics and Molecular Genetics, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - C Castronovo
- Istituto Auxologico Italiano, IRCCS, Lab of Medical Cytogenetics and Molecular Genetics, Milan, Italy
| | - A Sironi
- Istituto Auxologico Italiano, IRCCS, Lab of Medical Cytogenetics and Molecular Genetics, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - C Caslini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - C Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - R Rossetti
- Istituto Auxologico Italiano, IRCCS, Division of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy
| | - M Crippa
- Istituto Auxologico Italiano, IRCCS, Lab of Medical Cytogenetics and Molecular Genetics, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - I Ferrari
- Istituto Auxologico Italiano, IRCCS, Division of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy
| | - A Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - D Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - L Persani
- Istituto Auxologico Italiano, IRCCS, Division of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Marozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - P Finelli
- Istituto Auxologico Italiano, IRCCS, Lab of Medical Cytogenetics and Molecular Genetics, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| |
Collapse
|
4
|
Breakpoint mapping at nucleotide resolution in X-autosome balanced translocations associated with clinical phenotypes. Eur J Hum Genet 2019; 27:760-771. [PMID: 30700833 DOI: 10.1038/s41431-019-0341-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Precise breakpoint mapping of balanced chromosomal rearrangements is crucial to identify disease etiology. Ten female patients with X-autosome balanced translocations associated with phenotypic alterations were evaluated, by mapping and sequencing their breakpoints. The rearrangements' impact on the expression of disrupted genes, and inferred mechanisms of formation in each case were assessed. For four patients that presented one of the chromosomal breaks in heterochromatic and highly repetitive segments, we combined cytogenomic methods and short-read sequencing to characterize, at nucleotide resolution, breakpoints that occurred in reference genome gaps. Most of rearrangements were possibly formed by non-homologous end joining and have breakpoints at repeat elements. Seven genes were found to be disrupted in six patients. Six of the affected genes showed altered expression, and the functional impairment of three of them were considered pathogenic. One gene disruption was considered potentially pathogenic, and three had uncertain clinical significance. Four patients presented no gene disruptions, suggesting other pathogenic mechanisms. Four genes were considered potentially affected by position effect and the expression abrogation of one of them was confirmed. This study emphasizes the importance of breakpoint-junction characterization at nucleotide resolution in balanced rearrangements to reveal genetic mechanisms associated with the patients' phenotypes, mechanisms of formation that originated the rearrangements, and genomic nature of disrupted DNA sequences.
Collapse
|
5
|
Hyon C. [Usefulness of CGH-array and SNP-array for the etiological diagnosis of premature ovarian insufficiency]. Biol Aujourdhui 2018; 211:199-205. [PMID: 29412129 DOI: 10.1051/jbio/2017025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/14/2022]
Abstract
Premature ovarian insufficiency (POI) defined by the cessation of ovarian function before the age of 40 years and the increase of gonadotropins (> 25 UI/l) occurs in approximately 1-5% of women. Different mechanisms are responsible for POI: chemotherapy, radiotherapy, environmental factors or genetic causes but most frequently no cause is identified. In order to determine the etiology of POI, cytogenetic analyses such as karyotype are performed. The karyotype allows to identify abnormalities of the number of chromosomes as well as abnormalities of the structure such as translocations, deletions or insertions of a size greater than 5-10 Mb… Turner syndrome is the most frequent genetic cause of POI and deletions of the long arm of the X chromosome are other causes of POI identified by the karyotype. However, the resolution of the karyotype is low and other cytogenetic techniques were developed such as all genome microarray analysis. This technique includes CGH-array and SNP-array and allows to identify gain or loss of chromosomal material as small as 10 kb but not the balanced structural rearrangements. Different studies using microarray analysis in cohorts of patients presenting with POI identify candidate genes responsible for POI. Furthermore, they allowed to identify a recurrent microdeletion, which includes the CPEB1 gene, located in 15q25.2 in about 1.5% of patients with POI.
Collapse
Affiliation(s)
- Capucine Hyon
- AP-HP, GHUEP, Hôpital Armand Trousseau, Département de Génétique Médicale, Paris, France - INSERM, UMRS 933, Hôpital Armand Trousseau, Paris, France - Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
6
|
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2016; 91:183-198. [PMID: 27861765 DOI: 10.1111/cge.12921] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Primary ovarian insufficiency (POI) is characterized by a loss of ovarian function before the age of 40 and account for one major cause of female infertility. POI relevance is continuously growing because of the increasing number of women desiring conception beyond 30 years of age, when POI prevalence is >1%. POI is highly heterogeneous and can present with ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea, and it can be associated with other congenital or acquired abnormalities. In most cases POI remains classified as idiopathic. However, the age of menopause is an inheritable trait and POI has a strong genetic component. This is confirmed by the existence of several candidate genes, experimental and natural models. The variable expressivity of POI defect may indicate that, this disease may frequently be considered as a multifactorial or oligogenic defect. The most common genetic contributors to POI are the X chromosome-linked defects. Here, we review the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI with the expectation that this list will soon be upgraded, thus allowing the possibility to predict the risk of an early age at menopause in families with POI.
Collapse
Affiliation(s)
- R Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - I Ferrari
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Ji J, Qin Y, Wang R, Huang Z, Zhang Y, Zhou R, Song L, Ling X, Hu Z, Miao D, Shen H, Xia Y, Wang X, Lu C. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis. Oncotarget 2016; 7:78532-78540. [PMID: 27705943 PMCID: PMC5340235 DOI: 10.18632/oncotarget.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022] Open
Abstract
Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10-5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10-8) and VCX (p = 1.97 × 10-4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiufeng Ling
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 2015; 21:787-808. [PMID: 26243799 PMCID: PMC4594617 DOI: 10.1093/humupd/dmv036] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is characterized by marked heterogeneity, but with a significant genetic contribution. Identifying exact causative genes has been challenging, with many discoveries not replicated. It is timely to take stock of the field, outlining the progress made, framing the controversies and anticipating future directions in elucidating the genetics of POI. METHODS A search for original articles published up to May 2015 was performed using PubMed and Google Scholar, identifying studies on the genetic etiology of POI. Studies were included if chromosomal analysis, candidate gene screening and a genome-wide study were conducted. Articles identified were restricted to English language full-text papers. RESULTS Chromosomal abnormalities have long been recognized as a frequent cause of POI, with a currently estimated prevalence of 10-13%. Using the traditional karyotype methodology, monosomy X, mosaicism, X chromosome deletions and rearrangements, X-autosome translocations, and isochromosomes have been detected. Based on candidate gene studies, single gene perturbations unequivocally having a deleterious effect in at least one population include Bone morphogenetic protein 15 (BMP15), Progesterone receptor membrane component 1 (PGRMC1), and Fragile X mental retardation 1 (FMR1) premutation on the X chromosome; Growth differentiation factor 9 (GDF9), Folliculogenesis specific bHLH transcription factor (FIGLA), Newborn ovary homeobox gene (NOBOX), Nuclear receptor subfamily 5, group A, member 1 (NR5A1) and Nanos homolog 3 (NANOS3) seem likely as well, but mostly being found in no more than 1-2% of a single population studied. Whole genome approaches have utilized genome-wide association studies (GWAS) to reveal loci not predicted on the basis of a candidate gene, but it remains difficult to locate causative genes and susceptible loci were not always replicated. Cytogenomic methods (array CGH) have identified other regions of interest but studies have not shown consistent results, the resolution of arrays has varied and replication is uncommon. Whole-exome sequencing in non-syndromic POI kindreds has only recently begun, revealing mutations in the Stromal antigen 3 (STAG3), Synaptonemal complex central element 1 (SYCE1), minichromosome maintenance complex component 8 and 9 (MCM8, MCM9) and ATP-dependent DNA helicase homolog (HFM1) genes. Given the slow progress in candidate-gene analysis and relatively small sample sizes available for GWAS, family-based whole exome and whole genome sequencing appear to be the most promising approaches for detecting potential genes responsible for POI. CONCLUSION Taken together, the cytogenetic, cytogenomic (array CGH) and exome sequencing approaches have revealed a genetic causation in ∼20-25% of POI cases. Uncovering the remainder of the causative genes will be facilitated not only by whole genome approaches involving larger cohorts in multiple populations but also incorporating environmental exposures and exploring signaling pathways in intragenic and intergenic regions that point to perturbations in regulatory genes and networks.
Collapse
Affiliation(s)
- Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Joe Leigh Simpson
- Research and Global Programs March of Dimes Foundation, White Plains, NY, USA Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
9
|
Moysés-Oliveira M, Guilherme RDS, Dantas AG, Ueta R, Perez AB, Haidar M, Canonaco R, Meloni VA, Kosyakova N, Liehr T, Carvalheira GM, Melaragno MI. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations. Fertil Steril 2015; 103:1289-96.e2. [PMID: 25747126 DOI: 10.1016/j.fertnstert.2015.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. DESIGN Retrospective and case-control study. SETTING University-based research laboratory. PATIENT(S) Three women with balanced X-autosome translocation and primary amenorrhea. INTERVENTION(S) Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. MAIN OUTCOME MEASURE(S) Karyotype, copy number variation, breakpoint mapping, and gene expression levels. RESULT(S) All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. CONCLUSION(S) The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea.
Collapse
Affiliation(s)
- Mariana Moysés-Oliveira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roberta Dos Santos Guilherme
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil; Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renata Ueta
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Perez
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mauro Haidar
- Departament of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosane Canonaco
- Genetics Division, Hospital do Servidor Público do Estado de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Gianna Maria Carvalheira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Simpson JL. Genetics of female infertility due to anomalies of the ovary and mullerian ducts. Methods Mol Biol 2014; 1154:39-73. [PMID: 24782005 DOI: 10.1007/978-1-4939-0659-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genetic factors are pivotal in reproductive development and subsequent reproductive processes. If disturbed, infertility can occur. In the female, genetic factors affecting the ovary and the uterus are not uncommon causes of infertility. Terminal deletions on the X long arm and X short arm and X chromosomal mosaicism have long been accepted as causes of premature ovarian failure (POF). Responsible genes on the X have not yet elucidated. Attractive candidate genes for POF also exist on autosomes, and in over a dozen genes molecular perturbations are documented in non-syndromic POF. The most common single-gene cause of POF is premutation carriers for FMR1 (fragile X syndrome). As other candidate genes and additional ethnic groups are interrogated, the proportion of POF cases due to single-gene mutation will increase. Among uterine anomalies, incomplete mullerian fusion is most common. Increased recurrence risks for first-degree relatives confirm a role for genetic factors; interrogation of candidate genes is under way.
Collapse
Affiliation(s)
- Joe Leigh Simpson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, AHC2 693, Miami, FL, 33199, USA,
| |
Collapse
|
11
|
Norling A, Hirschberg AL, Rodriguez-Wallberg KA, Iwarsson E, Wedell A, Barbaro M. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform. Hum Reprod 2014; 29:1818-27. [PMID: 24939957 PMCID: PMC4093997 DOI: 10.1093/humrep/deu149] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Can high-resolution array comparative genomic hybridization (CGH) analysis of DNA samples from women with primary ovarian insufficiency (POI) improve the diagnosis of the condition and identify novel candidate genes for POI? SUMMARY ANSWER A mutation affecting the regulatory region of growth differentiation factor 9 (GDF9) was identified for the first time together with several novel candidate genes for POI. WHAT IS KNOWN ALREADY Most patients with POI do not receive a molecular diagnosis despite a significant genetic component in the pathogenesis. STUDY DESIGN, SIZE, DURATION We performed a case–control study. Twenty-six patients were analyzed by array CGH for identification of copy number variants. Novel changes were investigated in 95 controls and in a separate population of 28 additional patients with POI. The experimental procedures were performed during a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA samples from 26 patients with POI were analyzed by a customized 1M array-CGH platform with whole genome coverage and probe enrichment targeting 78 genes in sex development. By PCR amplification and sequencing, the breakpoint of an identified partial GDF9 gene duplication was characterized. A multiplex ligation-dependent probe amplification (MLPA) probe set for specific identification of deletions/duplications affecting GDF9 was developed. An MLPA probe set for the identification of additional cases or controls carrying novel candidate regions identified by array-CGH was developed. Sequencing of three candidate genes was performed. MAIN RESULTS AND THE ROLE OF CHANCE Eleven unique copy number changes were identified in a total of 11 patients, including a tandem duplication of 475 bp, containing part of the GDF9 gene promoter region. The duplicated region contains three NOBOX-binding elements and an E-box, important for GDF9 gene regulation. This aberration is likely causative of POI. Fifty-four patients were investigated for copy number changes within GDF9, but no additional cases were found. Ten aberrations constituting novel candidate regions were detected, including a second DNAH6 deletion in a patient with POI. Other identified candidate genes were TSPYL6, SMARCC1, CSPG5 and ZFR2. LIMITATIONS, REASONS FOR CAUTION This is a descriptive study and no functional experiments were performed. WIDER IMPLICATIONS OF THE FINDINGS The study illustrates the importance of analyzing small copy number changes in addition to sequence alterations in the genetic investigation of patients with POI. Also, promoter regions should be included in the investigation. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by grants from the Swedish Research council (project no 12198 to A.W. and project no 20324 to A.L.H.), Stockholm County Council (E.I., A.W. and K.R.W.), Foundation Frimurare Barnhuset (A.N., A.W. and M.B.), Karolinska Institutet (A.N., A.L.H., E.I., A.W. and M.B.), Novo Nordic Foundation (A.W.) and Svenska Läkaresällskapet (M.B.). The funding sources had no involvement in the design or analysis of the study. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- A Norling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 76, Sweden Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 76, Sweden Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A L Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - K A Rodriguez-Wallberg
- Department of Clinical Science, Intervention and Technology, Section for Obstetrics and Gynaecology and Fertility Unit, Karolinska University Hospital, Stockholm, Sweden
| | - E Iwarsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 76, Sweden Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Wedell
- Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Stockholm 171 76, Sweden
| | - M Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 76, Sweden Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Stockholm 171 76, Sweden
| |
Collapse
|
12
|
Castronovo C, Rossetti R, Rusconi D, Recalcati MP, Cacciatore C, Beccaria E, Calcaterra V, Invernizzi P, Larizza D, Finelli P, Persani L. Gene dosage as a relevant mechanism contributing to the determination of ovarian function in Turner syndrome. Hum Reprod 2013; 29:368-79. [PMID: 24324027 PMCID: PMC3896225 DOI: 10.1093/humrep/det436] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION What is the burden of X chromosome mosaicism in the occurrence of spontaneous menarche (SM) in Turner syndrome (TS)? SUMMARY ANSWER SM was significantly associated with X chromosome mosaicism in the TS patients; a mosaicism with around 10% euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques on uncultivated tissues. WHAT IS KNOWN ALREADY Spontaneous puberty can be observed in a minority of patients with TS, more frequently, but not exclusively, in those with a high level of 46,XX/45,X mosaicism at standard karyotype. The genetic mechanisms contributing to ovarian function in TS patients are still not determined. However, submicroscopic X-linked and autosomal copy number variations (CNVs) have recently emerged as an important genetic risk category for premature ovarian insufficiency and may be involved in modulating the TS ovarian phenotype. STUDY DESIGN, SIZE, DURATION A group of 40 patients with a diagnosis of TS at conventional karyotyping participated in the study; 6 patients had SM and 34 patients had primary amenorrhoea (PA). All clinical data and the patients’ DNA samples were collected over the years at a single paediatric clinic. PARTICIPANTS/MATERIALS, SETTING, METHODS The patients' samples were used to perform both genetic (Copy Number Assay) and molecular-cytogenetic (array-CGH and iFISH, interphase-FISH) analyses in order to evaluate the X chromosome mosaicism rate and to detect possible rare CNVs of genes with a known or predicted role in female fertility. MAIN RESULTS AND THE ROLE OF CHANCE All TS patients showed variable percentages of the 46,XX lineage, but these percentages were higher in the SM group (P < 0.01). A mosaicism around 10% for the euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques performed in uncultivated tissues. A few CNVs involving autosomal and X-linked ovary-related loci were identified by array-CGH analysis and confirmed by real-time quantitative PCR, including a BMP15 gene duplication at Xp11.22, a deletion interrupting the PAPPA gene at 9q33.1, and an intragenic duplication involving the PDE8A gene at 15q25.3. LIMITATIONS, REASONS FOR CAUTION This is a pilot study on a relatively small sample size and confirmation in larger TS cohorts may be required. The ovarian tissue could not be studied in any patients and in a subgroup of patients, the mosaicism was estimated in tissues of different embryonic origin. WIDER IMPLICATIONS OF THE FINDINGS The combined determination of X chromosome mosaicism by molecular and molecular-cytogenetic techniques may become useful for the prediction of SM in TS. The detection of CNVs in both X-linked and autosomal ovary-related genes further suggests gene dosage as a relevant mechanism contributing to the ovarian phenotype of TS patients. These CNVs may pinpoint novel candidates relevant to female fertility and generate further insights into the mechanisms contributing to ovarian function. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Telethon Foundation (grant no: GGP09126 to L.P.), the Italian Ministry of the University and Research (grant number: 2006065999 to P.F.) and a Ministry of Health grant ‘Ricerca Corrente’ to IRCCS Istituto Auxologico Italiano (grant number: 08C704-2006). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Chiara Castronovo
- Medical Cytogenetics and Molecular Genetics Lab, IRCSS Istituto Auxologico Italiano, 20145 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Detailed clinical and molecular study of 20 females with Xq deletions with special reference to menstruation and fertility. Eur J Med Genet 2013; 56:1-6. [DOI: 10.1016/j.ejmg.2012.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/31/2012] [Indexed: 11/21/2022]
|
14
|
Jiao X, Qin C, Li J, Qin Y, Gao X, Zhang B, Zhen X, Feng Y, Simpson JL, Chen ZJ. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum Reprod 2012; 27:2201-7. [DOI: 10.1093/humrep/des104] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Qin Y, Zhao H, Xu J, Shi Y, Li Z, Qiao J, Liu J, Qin C, Ren C, Li J, Chen S, Cao Y, Simpson JL, Chen ZJ. Association of 8q22.3 locus in Chinese Han with idiopathic premature ovarian failure (POF). Hum Mol Genet 2011; 21:430-6. [DOI: 10.1093/hmg/ddr462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Fusco F, Paciolla M, Chen E, Li X, Genesio R, Conti A, Jones J, Poeta L, Lioi MB, Ursini MV, Miano MG. Genetic and molecular analysis of a new unbalanced X;18 rearrangement: localization of the diminished ovarian reserve disease locus in the distal Xq POF1 region. Hum Reprod 2011; 26:3186-96. [PMID: 21859812 DOI: 10.1093/humrep/der266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes, the genetic cause of which is still unknown. METHODS AND RESULTS We describe a family with a new unbalanced X;18 translocation der(X) associated with either fully attenuated or DOR phenotype in the same family. Cytogenetics and array comparative genomic hybridization (aCGH) studies have revealed the same partial Xq monosomy and partial 18q trisomy in both the 32-year-old female with DOR and the unaffected mother. The genetic analysis has defined a subtelomeric deletion spanning 13.3 Mb from Xq27.3 to -Xqter, which covers the premature ovarian failure locus 1 (POF1); and a duplication spanning 13.4 Mb, from 18q22.1 to 18qter. From a parental-origin study, we have inferred that the rearranged X chromosome is maternally derived. The Xq27 and 18q22 breakpoint regions fall in a region extremely rich in long interspersed nuclear element, a class of retrotransposons able to trigger mispairing and unusual crossovers. X-inactivation studies reveal a skewing of der(X) both in the mother and the proband. Therefore, the phenotypic expression of der(X) is fully attenuated in the fertile mother and partially attenuated in the DOR daughter. CONCLUSIONS We report on an unbalanced maternally derived translocation (X;18)(q27;q22) with different intra-familial reproductive performances, ranging from fertility to DOR. Skewed X-inactivation seems to restore the unbalanced genetic make-up, fully silencing the 18q22 trisomy and at least in part the Xq27 monosomy. The chromosomal abnormality observed in this family supports the presence of a DOR susceptibility locus in the distal Xq region and targets the POF1 region for further investigation.
Collapse
Affiliation(s)
- Francesca Fusco
- Institute of Genetics and Biophysics Adriano Buzzati Traverso CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|