1
|
Kobayashi T, Nishikimi K, Mitsuhashi A, Piao H, Matsuoka A, Otsuka S, Tate S, Shozu M, Usui H. Suppressor-type TERT mutations associated with recurrence in ovarian clear cell carcinoma. Genes Chromosomes Cancer 2023; 62:471-476. [PMID: 36710084 DOI: 10.1002/gcc.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Several cancers harbor "enhancer-type" mutations of the telomerase reverse transcriptase (TERT) promoter for immortalization. Here, we report that 8.6% (8/93) of ovarian clear cell carcinomas (OCCCs) possess the "suppressor-type" TERT promoter mutation. The recurrence rate of OCCCs with "suppressor-type" TERT promoter mutations was 62.5% (5/8) and was significantly higher than that of the "unaffected-type" with no mutation (20.8%, 15/72) or "enhancer-type" TERT promoter mutations (7.7%, 1/13). Our findings show that the acquired suppression of TERT is closely associated with OCCC development and recurrence, indicating the need for further research on telomerase suppression in cancers.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kyoko Nishikimi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Mitsuhashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Obstetrics and Gynecology, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hongying Piao
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumu Matsuoka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoyo Otsuka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Tate
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Usui
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Zhao X, Luo D, Liu T, Zhang H, Xie Y, Kong W. BIBR1532 Affects Endometrial Cell Proliferation, Migration, and Invasion in Endometriosis via Telomerase Inhibition and MAPK Signaling. Gynecol Obstet Invest 2023; 88:226-239. [PMID: 37429261 DOI: 10.1159/000530460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/27/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVES The effect of telomerase inhibitor BIBR1532 on endometriotic cells was investigated to explore the inhibitory effect of targeting telomerase on endometriosis. DESIGN In vitro primary cell culture study. Participants/Materials: Primary endometrial cells derived from eutopic and ectopic endometrium in patients with endometriosis. SETTING The study was conducted in the university hospital. METHODS Paired eutopic and ectopic endometrial cells were collected from 6 patients from January 2018 to July 2021. A TRAP assay was performed to detect the telomerase activity of the cells. MTT, cell cycle, apoptosis, migration, and invasion assays were performed to study the inhibitory effect of BIBR1532. Enrichment analysis was performed to identify the key pathways involved in endometriosis progression and telomerase action. Then, Western blotting was used to investigate the expression of related proteins. RESULTS BIBR1532 treatment significantly inhibited the growth of eutopic and ectopic endometrial cells, with apoptosis and cell cycle signaling involved. Migration and invasion, important characteristics for the establishment of ectopic lesions, were also inhibited by BIBR1532. The MAPK signaling cascade, related to telomerase and endometriosis, was decreased in eutopic and ectopic endometrial stromal cells with the treatment of BIBR1532. LIMITATIONS The severe side effects of telomerase inhibitors might be the main obstacle to clinical application, so it is necessary to find better drug delivery methods in vivo. CONCLUSIONS The telomerase inhibitor BIBR1532 affects endometrial cell proliferation, migration, and invasion in endometriosis.
Collapse
Affiliation(s)
- Xiaoling Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dan Luo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingting Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - He Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yunkai Xie
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
3
|
Zhang H, Kong W, Xie Y, Zhao X, Luo D, Chen S, Pan Z. Telomere-related genes as potential biomarkers to predict endometriosis and immune response: Development of a machine learning-based risk model. Front Med (Lausanne) 2023; 10:1132676. [PMID: 36968845 PMCID: PMC10034389 DOI: 10.3389/fmed.2023.1132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionEndometriosis (EM) is an aggressive, pleomorphic, and common gynecological disease. Its clinical presentation includes abnormal menstruation, dysmenorrhea, and infertility, which seriously affect the patient's quality of life. However, the pathogenesis underlying EM and associated regulatory genes are unknown.MethodsTelomere-related genes (TRGs) were uploaded from TelNet. RNA-sequencing (RNA-seq) data of EM patients were obtained from three datasets (GSE5108, GSE23339, and GSE25628) in the GEO database, and a random forest approach was used to identify telomere signature genes and build nomogram prediction models. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the pathways involved in the action of the signature genes. Finally, the CAMP database was used to screen drugs for potential use in EM treatment.ResultsFifteen total genes were screened as EM–telomere differentially expressed genes. Further screening by machine learning obtained six genes as characteristic predictive of EM. Immuno-infiltration analysis of the telomeric genes showed that expressions including macrophages and natural killer cells were significantly higher in cluster A. Further enrichment analysis showed that the differential genes were mainly enriched in biological pathways like cell cycle and extracellular matrix. Finally, the Connective Map database was used to screen 11 potential drugs for EM treatment.DiscussionTRGs play a crucial role in EM development, and are associated with immune infiltration and act on multiple pathways, including the cell cycle. Telomere signature genes can be valuable predictive markers for EM.
Collapse
|
4
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
5
|
Wang M, Wu Y, He Y, Liu J, Chen Y, Huang J, Qi G, Li P. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci Rep 2022; 12:12302. [PMID: 35853978 PMCID: PMC9296487 DOI: 10.1038/s41598-022-16629-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Endometrial epithelial cells carry distinct cancer-associated alterations that may be more susceptible to endometriosis. Mouse models have shown that overexpression of SIRT1 associated with oncogene activation contributes to the pathogenesis of endometriosis, but the underlying reason remains elusive. Here, we used integrated systems biology analysis and found that enrichment of endometrial stromal fibroblasts in endometriosis and their cellular abundance correlated negatively with epithelial cells in clinical specimens. Furthermore, endometrial epithelial cells were characterized by significant overexpression of SIRT1, which is involved in triggering the EMT switch by escaping damage or oncogene-induced induced senescence in clinical specimens and in vitro human cell line models. This observation supports that genetic and epigenetic incident favors endometrial epithelia cells escape from senescence and fuel EMT process in endometriosis, what could be overcome by downregulation of SIRT1.
Collapse
Affiliation(s)
- Minghua Wang
- Department of Pathology, Longgang District People's Hospital, Shenzhen, 518172, China.,Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jing Liu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yingxing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Guolong Qi
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Knockdown of the stem cell marker Musashi-1 inhibits endometrial cancer growth and sensitizes cells to radiation. Stem Cell Res Ther 2022; 13:212. [PMID: 35619161 PMCID: PMC9137084 DOI: 10.1186/s13287-022-02891-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Endometrial carcinoma is the most common gynecological cancer in Europe. Musashi-1 is known to be a key regulator of endometrial cancer stem cells and a negative prognostic marker. In the present study, we aimed to understand growth and gene expression patterns in endometrial carcinoma after Musashi-1 knockdown in vitro and in vivo. Changes in therapeutic resistance were also assessed.
Methods First, we performed analyses to understand Musashi-1 expression patterns using The Cancer Genome Atlas database. We then proceeded to assess effects of small interfering RNA-based Musashi-1 targeting in two endometrial carcinoma cell lines, Ishikawa and KLE. After quantifying baseline changes in cell metabolism, we used MTT tests to assess chemotherapy effects and colony formation assays to understand changes in radioresistance. For mechanistic study, we used quantitative polymerase chain reaction (qPCR) and western blotting of key Musashi-1 target genes and compared results to primary tissue database studies. Finally, xenograft experiments in a mouse model helped understand in vivo effects of Musashi-1 knockdown. Results Musashi-1 is aberrantly expressed in primary tumor tissues. In vitro, silencing of Musashi-1 resulted in a strong decline in cell proliferation and radioresistance, while chemoresistance remained unchanged. Loss of Musashi-1 led to downregulation of telomerase, DNA-dependent protein kinase, the Notch pathway and overexpression of cyclin-dependent kinase inhibitor p21, the latter of which we identified as a key mediator of Msi-1 knockdown-related anti-proliferative signaling. In vivo, the anti-proliferative effect was confirmed, with Msi-1 knockdown tumors being about 40% reduced in size. Conclusions Musashi-1 knockdown resulted in a strong decrease in endometrial cancer proliferation and a loss of radioresistance, suggesting therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02891-3.
Collapse
|
7
|
Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival. Int J Mol Sci 2022; 23:ijms23020626. [PMID: 35054812 PMCID: PMC8775816 DOI: 10.3390/ijms23020626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. "Immortality" of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies.
Collapse
|
8
|
Kokot I, Piwowar A, Jędryka M, Kratz EM. Is There a Balance in Oxidative-Antioxidant Status in Blood Serum of Patients with Advanced Endometriosis? Antioxidants (Basel) 2021; 10:antiox10071097. [PMID: 34356330 PMCID: PMC8301022 DOI: 10.3390/antiox10071097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Can redox homeostasis indicators be potential non-invasive markers, crucial in the diagnosis and treatment of endometriosis? We checked if the differences in levels of serum oxidative-antioxidant balance parameters (TAS, FRAP, albumin, total bilirubin, uric acid, iron, SIRT3, SIRT5, SIRT6, telomerase, AOPP) are significant between patients with advanced endometriosis (E), healthy women (control group, C) and non-endometriosis women, but with other gynecological disorders (NE). The FRAP concentrations were significantly higher in E and NE group than in the control group (p = 0.015 and p = 0.017, respectively). The telomerase concentrations were significantly higher in the endometriosis group than in the control group (p = 0.004). Significantly higher concentrations of AOPP were observed in E (p < 0.001) and NE groups (p = 0.028) in comparison to the control subjects. Between stages III and IV of endometriosis, a significant difference existed only in concentration of iron (p = 0.013). There were no significant differences between the studied groups in the values of the remaining parameters. Based on the results of ROC curve analysis, we can conclude that the levels of serum FRAP, telomerase and AOPP may be taken into account as promising diagnostics markers that reflect the degree of oxidative stress accompanying advanced endometriosis.
Collapse
Affiliation(s)
- Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0160
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland;
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Square 12, 53-413 Wroclaw, Poland;
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Hirszfeld Square 12, 53-413 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
9
|
Parvanov D, Ganeva R, Vidolova N, Stamenov G. Decreased number of p16-positive senescent cells in human endometrium as a marker of miscarriage. J Assist Reprod Genet 2021; 38:2087-2095. [PMID: 33821427 DOI: 10.1007/s10815-021-02182-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate whether the number of p16-positive cells in the functional layer of the endometrium could be a useful biomarker to identify women with recurrent implantation failure (RIF) undergoing in vitro fertilization (IVF) at risk of miscarriage. METHODS Immunohistochemical staining was performed in 311 endometrial biopsies taken during mid-luteal phase using antibody against p16INK4A. The percentage of p16-positive cells was determined in luminal, glandular and stromal endometrial cells. After embryo transfer, women were divided into the following groups: unsuccessful embryo implantation (n = 151), miscarriage (n = 66) and live birth (n = 94). The percentage of p16-positive cells in all endometrial compartments was compared among these groups. RESULTS We found that the percentages of p16-positive glandular and luminal epithelial endometrial cells were significantly higher in patients with live births compared to women with miscarriage (9.3% vs. 2.9%, P < 0.001; and 35.2% vs. 11.7%, P = 0.001, respectively). This tendency was not confirmed in thе stroma. The cut-off values with p16-positive luminal cells lower than 12.5% and p16-positive glandular cells lower than 3.2% could be predictive factors for miscarriage (AUC 0.80 and 0.79; sensitivity 71.3% and 74.5%; specificity 74.2% and 71.2%, respectively). CONCLUSION A decreased number of senescent p16-positive cells could be involved in the implantation failures and aetiology of recurrent miscarriage. Women with history of RIF with reduced populations of p16-positive cells in the endometrial glandular and luminal epithelium may be at greater risk for unsuccessful implantation and miscarriage. The percentage of p16-positive luminal epithelial cells may be clinically useful as a biomarker of miscarriage.
Collapse
Affiliation(s)
- Dimitar Parvanov
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria.
| | - Rumiana Ganeva
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| | - Nina Vidolova
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| | - Georgi Stamenov
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| |
Collapse
|
10
|
Alnafakh R, Saretzki G, Midgley A, Flynn J, Kamal AM, Dobson L, Natarajan P, Stringfellow H, Martin-Hirsch P, DeCruze SB, Coupland SE, Hapangama DK. Aberrant Dyskerin Expression Is Related to Proliferation and Poor Survival in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13020273. [PMID: 33450922 PMCID: PMC7828388 DOI: 10.3390/cancers13020273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Telomeres are the protective caps at the ends of chromosomes, and they are maintained by an enzyme called telomerase. Telomerase activity allows rapid reproduction of the cells (proliferation) of the lining of the womb (endometrium). Telomerase levels are high in cancers in general, including in endometrial cancer. Dyskerin is one of the main components of the telomerase enzyme. While the other main components of telomerase have been studied in endometrial cancer, there are no previous studies on dyskerin in the endometrium. Our study shows that dyskerin levels are significantly lower in endometrial cancer and levels are linked to the survival of women. Experimentally increasing dyskerin protein in endometrial cells in the laboratory reduces the rate of cell proliferation. Consequently, we propose that dyskerin may be a regulator of endometrial cancer cell proliferation, and further studies are required to test if it can be targeted to develop new therapies for endometrial cancer. Abstract Dyskerin is a core-component of the telomerase holo-enzyme, which elongates telomeres. Telomerase is involved in endometrial epithelial cell proliferation. Most endometrial cancers (ECs) have high telomerase activity; however, dyskerin expression in human healthy endometrium or in endometrial pathologies has not been investigated yet. We aimed to examine the expression, prognostic relevance, and functional role of dyskerin in human EC. Endometrial samples from a cohort of 175 women were examined with immunohistochemistry, immunoblotting, and qPCR. The EC cells were transfected with Myc-DDK-DKC1 plasmid and the effect of dyskerin overexpression on EC cell proliferation was assessed by flow cytometry. Human endometrium expresses dyskerin (DKC1) and dyskerin protein levels are significantly reduced in ECs when compared with healthy postmenopausal endometrium. Low dyskerin immunoscores were potentially associated with worse outcomes, suggesting a possible prognostic relevance. Cancer Genome Atlas (TCGA) ECs dataset (n = 589) was also interrogated. The TCGA dataset further confirmed changes in DKC1 expression in EC with prognostic significance. Transient dyskerin overexpression had a negative effect on EC cell proliferation. Our data demonstrates a role for dyskerin in normal endometrium for the first time and confirms aberrant expression with possible prognostic relevance in EC. Interventions aimed at modulating dyskerin levels may provide novel therapeutic options in EC.
Collapse
Affiliation(s)
- Rafah Alnafakh
- Liverpool Women’s Hospital NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (L.D.); (P.N.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
- Department of Pathology, Al-Hilla Teaching Hospital, Babil, Iraq
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Angela Midgley
- Experimental Arthritis Treatment Centre for Children, Institute in the Park, Department of Women’s and Children’s Health, University of Liverpool, Liverpool L12 2AP, UK;
| | | | - Areege M. Kamal
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
- Pathology Department, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Lucy Dobson
- Liverpool Women’s Hospital NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (L.D.); (P.N.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
| | - Purushothaman Natarajan
- Liverpool Women’s Hospital NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (L.D.); (P.N.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
| | - Helen Stringfellow
- Lancashire Teaching Hospital NHS Trust, Preston PR2 9HT, UK; (H.S.); (P.M.-H.)
| | | | - Shandya B. DeCruze
- Liverpool Women’s Hospital NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (L.D.); (P.N.); (S.B.D.)
| | - Sarah E. Coupland
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK;
| | - Dharani K. Hapangama
- Liverpool Women’s Hospital NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (L.D.); (P.N.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK;
- Correspondence:
| |
Collapse
|
11
|
Endometriosis Is Associated with a Significant Increase in hTERC and Altered Telomere/Telomerase Associated Genes in the Eutopic Endometrium, an Ex-Vivo and In Silico Study. Biomedicines 2020; 8:biomedicines8120588. [PMID: 33317189 PMCID: PMC7764055 DOI: 10.3390/biomedicines8120588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres protect chromosomal ends and they are maintained by the specialised enzyme, telomerase. Endometriosis is a common gynaecological disease and high telomerase activity and higher hTERT levels associated with longer endometrial telomere lengths are characteristics of eutopic secretory endometrial aberrations of women with endometriosis. Our ex-vivo study examined the levels of hTERC and DKC1 RNA and dyskerin protein levels in the endometrium from healthy women and those with endometriosis (n = 117). The in silico study examined endometriosis-specific telomere- and telomerase-associated gene (TTAG) transcriptional aberrations of secretory phase eutopic endometrium utilising publicly available microarray datasets. Eutopic secretory endometrial hTERC levels were significantly increased in women with endometriosis compared to healthy endometrium, yet dyskerin mRNA and protein levels were unperturbed. Our in silico study identified 10 TTAGs (CDKN2A, PML, ZNHIT2, UBE3A, MCCC2, HSPC159, FGFR2, PIK3C2A, RALGAPA1, and HNRNPA2B1) to be altered in mid-secretory endometrium of women with endometriosis. High levels of hTERC and the identified other TTAGs might be part of the established alteration in the eutopic endometrial telomerase biology in women with endometriosis in the secretory phase of the endometrium and our data informs future research to unravel the fundamental involvement of telomerase in the pathogenesis of endometriosis.
Collapse
|
12
|
Adishesh M, Alnafakh R, Baird DM, Jones RE, Simon S, Button L, Kamal AM, Kirwan J, DeCruze SB, Drury J, Saretzki G, Hapangama DK. Human Endometrial Carcinogenesis Is Associated with Significant Reduction in Long Non-Coding RNA, TERRA. Int J Mol Sci 2020; 21:E8686. [PMID: 33217925 PMCID: PMC7698627 DOI: 10.3390/ijms21228686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Telomeres are transcribed as long non-coding RNAs called TERRAs (Telomeric repeat containing RNA) that participate in a variety of cellular regulatory functions. High telomerase activity (TA) is associated with endometrial cancer (EC). This study aimed to examine the levels of three TERRAs, transcribed at chromosomes 1q-2q-4q-10q-13q-22q, 16p and 20q in healthy (n = 23) and pathological (n = 24) human endometrium and to examine their association with cellular proliferation, TA and telomere lengths. EC samples demonstrated significantly reduced levels of TERRAs for Chromosome 16p (Ch-16p) (p < 0.002) and Chromosome 20q (Ch-20q) (p = 0.0006), when compared with the postmenopausal samples. No significant correlation was found between TERRA levels and TA but both Ch-16p and Ch-20q TERRA levels negatively correlated with the proliferative marker Ki67 (r = -0.35, p = 0.03 and r = -0.42, p = 0.01 respectively). Evaluation of single telomere length analysis (STELA) at XpYp telomeres demonstrated a significant shortening in EC samples when compared with healthy tissues (p = 0.002). We detected TERRAs in healthy human endometrium and observed altered individual TERRA-specific levels in malignant endometrium. The negative correlation of TERRAs with cellular proliferation along with their significant reduction in EC may suggest a role for TERRAs in carcinogenesis and thus future research should explore TERRAs as potential therapeutic targets in EC.
Collapse
Affiliation(s)
- Meera Adishesh
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Rafah Alnafakh
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Duncan M. Baird
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK; (D.M.B.); (R.E.J.)
| | - Rhiannon E. Jones
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK; (D.M.B.); (R.E.J.)
| | - Shannon Simon
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Lucy Button
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Areege M. Kamal
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
- The National Centre for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - John Kirwan
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
| | - S. Bridget DeCruze
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
| | - Josephine Drury
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Gabriele Saretzki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Dharani K. Hapangama
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| |
Collapse
|
13
|
Gnecco JS, Brown AT, Kan EL, Baugh L, Ives C, Loring M, Griffith LG. Physiomimetic Models of Adenomyosis. Semin Reprod Med 2020; 38:179-196. [PMID: 33176387 PMCID: PMC7803459 DOI: 10.1055/s-0040-1719084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial–stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.
Collapse
Affiliation(s)
- Juan S Gnecco
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alex T Brown
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen L Kan
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauren Baugh
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Ives
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Megan Loring
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Endometriosis and Adenomyosis Care Collaborative, Center for Minimally Invasive Gynecologic Surgery, Newton Wellesley Hospital, Newton, Massachusetts
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
14
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|
15
|
Human Uterine Biopsy: Research Value and Common Pitfalls. Int J Reprod Med 2020; 2020:9275360. [PMID: 32411783 PMCID: PMC7206876 DOI: 10.1155/2020/9275360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
The human uterus consists of the inner endometrium, the myometrium, and the outer serosa. Knowledge of the function of the uterus in health and disease is relevant to reproduction, fertility, embryology, gynaecology, endocrinology, and oncology. Research performed on uterine biopsies is essential to further the current understanding of human uterine biology. This brief review explores the value of the uterine biopsy in gynaecological and human fertility research and explores the common problems encountered when analysing data generated from different types of uterine biopsies, with the aim of improving the quality, reproducibility, and clinical translatability of future research.
Collapse
|
16
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
17
|
Vasilopoulos E, Fragkiadaki P, Kalliora C, Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM, Georgiadis G, Mamoulakis C, Makrigiannakis A, Spandidos DA, Tsatsakis A. The association of female and male infertility with telomere length (Review). Int J Mol Med 2019; 44:375-389. [PMID: 31173155 PMCID: PMC6605974 DOI: 10.3892/ijmm.2019.4225] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Telomere length (TL) has long been associated with aging, as telomeres serve as protective caps of chromosomes, and are thus deeply involved in the preservation of genome integrity and are vital to cellular functions. Traditionally, a strong link connects aging and infertility in both sexes, with an earlier onset in females. Over the past decade, telomeres have attracted increasing attention due to the role they play in fertility. In this review, we investigated the potential positive or negative association between relative TL and different factors of female and male infertility. A systematic search of the PubMed database was conducted. Out of the 206 studies identified, 45 were reviewed as they fulfilled the criteria of validity and relevance. Following an analysis and a comparison of the study outcomes, several clear trends were observed. The majority of female infertility factors were associated with a shorter TL, with the exception of endometriosis, premature ovarian failure and clear cell carcinoma that were associated with a longer TL and polycystic ovary syndrome (PCOS), which revealed conflicting results among several studies, leading to ambiguous conclusions. Male infertility factors were associated with a shorter TL. Although this review can provide an outline of general trends in the association of TL with infertility factors, further epidemiological and original research studies are required to focus on investigating the basis of these varying lengths of telomeres.
Collapse
Affiliation(s)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - George Georgiadis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
18
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Tempest N, Baker AM, Wright NA, Hapangama DK. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche? Hum Reprod 2019; 33:1052-1062. [PMID: 29648645 PMCID: PMC5972618 DOI: 10.1093/humrep/dey083] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated? SUMMARY ANSWER LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated. WHAT IS KNOWN ALREADY The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia. STUDY DESIGN, SIZE, DURATION The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture. PARTICIPANTS/MATERIALS, SETTING, METHODS In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC). MAIN RESULTS AND THE ROLE OF CHANCE LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0.01), however, they did not correlate in luminal and stratum basalis epithelium (r = 0.5 and 0.13, respectively). Endometrial LGR5 demonstrates a dynamic spatiotemporal expression pattern, suggesting hormonal regulation. Oral and local progestogens significantly reduced endometrial LGR5 mRNA levels compared with women not on hormonal treatment (P < 0.01). Our data were in agreement with in silico analysis of published endometrial microarrays. LARGE SCALE DATA We did not generate our own large scale data but interrogated publically available large scale data sets. LIMITATIONS, REASONS FOR CAUTION In the absence of reliable antibodies for human LGR5 protein and validated lineage markers for the various epithelial populations that potentially exist within the endometrium, our study does not formally characterise or examine the functional ability of the resident LGR5+ cells as multipotent. WIDER IMPLICATIONS OF THE FINDINGS These data will facilitate future lineage tracing studies in the human endometrial epithelium; to identify the location of stem cells and further complement the in vitro functional studies, to confirm if the LGR5 expressing epithelial cells indeed represent the epithelial stem cell population. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Wellbeing of Women project grant (RTF510) and Cancer Research UK (A14895). None of the authors have any conflicts of interest to disclose.
Collapse
Affiliation(s)
- N Tempest
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool L8 7SS, UK.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK
| | - A M Baker
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - N A Wright
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - D K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool L8 7SS, UK.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK
| |
Collapse
|
20
|
Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. Int J Mol Sci 2018; 19:ijms19103240. [PMID: 30347708 PMCID: PMC6214006 DOI: 10.3390/ijms19103240] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer.
Collapse
|
21
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
22
|
Eissa AM, Barros FSV, Vrljicak P, Brosens JJ, Cameron NR. Enhanced Differentiation Potential of Primary Human Endometrial Cells Cultured on 3D Scaffolds. Biomacromolecules 2018; 19:3343-3350. [DOI: 10.1021/acs.biomac.8b00635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ahmed M. Eissa
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria Australia
- Department of Polymers, Chemical Industries Research Division, National Research Centre (NRC), El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt
| | - Flavio S. V. Barros
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Jan J. Brosens
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria Australia
| |
Collapse
|
23
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|