1
|
Tutak K, Broniarek I, Zielezinski A, Niewiadomska D, Skrzypczak T, Baud A, Sobczak K. Insufficiency of 40S ribosomal proteins, RPS26 and RPS25, negatively affects biosynthesis of polyglycine-containing proteins in fragile-X associated conditions. eLife 2025; 13:RP98631. [PMID: 40377206 DOI: 10.7554/elife.98631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Expansion of CGG repeats (CGGexp) in the 5' untranslated region (5'UTR) of the FMR1 gene underlies the fragile X premutation-associated conditions including tremor/ataxia syndrome, a late-onset neurodegenerative disease and fragile X-associated primary ovarian insufficiency. One common pathomechanism of these conditions is the repeat-associated non-AUG-initiated (RAN) translation of CGG repeats of mutant FMR1 mRNA, resulting in production of FMRpolyG, a toxic protein containing long polyglycine tract. To identify novel modifiers of RAN translation we used an RNA-tagging system and mass spectrometry-based screening. It revealed proteins enriched on CGGexp-containing FMR1 RNA in cellulo, including a ribosomal protein RPS26, a component of the 40 S subunit. We demonstrated that depletion of RPS26 and its chaperone TSR2, modulates FMRpolyG production and its toxicity. We also found that the RPS26 insufficiency impacted translation of limited number of proteins, and 5'UTRs of mRNAs encoding these proteins were short and guanosine and cytosine-rich. Moreover, the silencing of another component of the 40 S subunit, the ribosomal protein RPS25, also induced repression of FMRpolyG biosynthesis. Results of this study suggest that the two 40 S ribosomal proteins and chaperone TSR2 play an important role in noncanonical CGGexp-related RAN translation.
Collapse
Affiliation(s)
- Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Tomasz Skrzypczak
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznan, Poland
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznan, Poland
| |
Collapse
|
2
|
Agustí I, Méndez M, Borrás A, Goday A, Guimerà M, Peralta S, Ribera L, Rodriguez-Revenga L, Manau D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes (Basel) 2024; 15:1008. [PMID: 39202368 PMCID: PMC11353426 DOI: 10.3390/genes15081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The relationship between premature ovarian insufficiency (FXPOI) and premutation in the FMR1 gene is well established. In recent years, though, a potential relationship between the latter and a low ovarian reserve has been suggested. To explore it, we conducted a retrospective study in an IVF program at a university tertiary referral center in Barcelona (Spain). Data were obtained retrospectively from a total of 385 women referred for FMR1 gene testing at our institution from January 2018 to December 2021. We compared the prevalence of FMR1 gene premutation between 93 of them, younger than 35 years, with a diminished ovarian reserve (DOR), characterized by levels of anti-Mullerian hormone < 1.1 ng/mL and antral follicle count < 5; and 132 egg donors screened by protocol that served as the controls. We found a higher prevalence of FMR1 premutation in the DOR group (seven patients (7.69%)) than in the control group (one patient (1.32%)), Fisher-exact test p-value = 0.012). We concluded that compared with the general population represented by young egg donors, the prevalence of FMR1 gene premutation is higher in young patients with a diminished ovarian reserve. Although these findings warrant further prospective validation in a larger cohort of patients within DOR, they suggest that, in clinical practice, FMR1 premutation should be determined in infertile young patients with DOR in order to give them adequate genetic counselling.
Collapse
Affiliation(s)
- Inés Agustí
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Méndez
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Aina Borrás
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Goday
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Guimerà
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Sara Peralta
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laura Ribera
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona—Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Manau
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Jin X, Zeng W, Xu Y, Jin P, Dong M. Cytosine-guanine-guanine repeats of FMR1 gene negatively affect ovarian reserve and response in Chinese women. Reprod Biomed Online 2024; 49:103779. [PMID: 38678742 DOI: 10.1016/j.rbmo.2023.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 05/01/2024]
Abstract
RESEARCH QUESTION Do cytosine-guanine-guanine (CGG) repeats of the FMR1 gene affect ovarian function, ovarian response and assisted reproductive technology (ART) outcomes in Chinese women? DESIGN A retrospective cohort study of 5869 women who underwent 8932 ART cycles at Women's Hospital, School of Medicine, Zhejiang University between January 2018 and June 2021. Basic hormone level, oocyte yield, embryo quality and the rate of live birth were considered as main outcome measures to evaluate the effects of CGG repeats on ovarian function, ovarian response and ART outcomes. RESULTS The CGG repeats were negatively related to serum anti-Müllerian hormone (AMH), oestradiol, antral follicle count (AFC) and oocyte yield. A significant association was found between serum AMH, oestradiol and AFC even after age was controlled for. No statistically significant association, however, was found between CGG repeats and embryo quality or live birth rate. Ovarian function mediated the association between CGG repeats and ovarian response. CONCLUSION Increased CGG repeats on the FMR1 gene were associated with diminished ovarian function and poor ovarian response, and ovarian function played an intermediary role in the relationship between CGG repeats and ovarian response.
Collapse
Affiliation(s)
- Xinyang Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenshan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China.
| |
Collapse
|
4
|
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EH, Jansen-West K, Kaufhold R, Gomez N, Sher R, Petrucelli L, Barmada S, Todd P. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. Nucleic Acids Res 2024; 52:5928-5949. [PMID: 38412259 PMCID: PMC11162809 DOI: 10.1093/nar/gkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sinem Ovunc
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross Kaufhold
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas B Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Zhu X, Liu M, Dong R, Gao L, Hu J, Zhang X, Wu X, Fan B, Chen C, Xu W. Mechanism Exploration of Environmental Pollutants on Premature Ovarian Insufficiency: a Systematic Review and Meta-analysis. Reprod Sci 2024; 31:99-106. [PMID: 37612521 DOI: 10.1007/s43032-023-01326-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
As a public health problem, premature ovarian insufficiency leads to infertility or sub-fertility. In addition to premature ovarian insufficiency (POI) increases the lifetime risk of bone fragility, cardiovascular disease, and cognitive impairment. To investigate the effects of environmental pollutants on the occurrence of POI and explore its mechanism, we conducted a computer search for articles published in electronic databases by December 13, 2022. Three reviewers independently examined all included studies and scored the qualities of included studies using the Newcastle-Ottawa Scale criteria. In this meta-analysis, eight clinical studies as well as ten preclinical findings showed a pooled OR of 2.331 and 95% CI of 1.968-2.760. This confirms that environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI. In addition, it is demonstrated from the results of this study that signaling pathway of calcium and PI3K Akt and Xpnpep2, Col1, Col3, Col4, Cx43, Egr3, Tff1, and Ptgs2 genes may all be involved in the process. Environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Meixia Liu
- Occupational Health Department, Shanghai Municipal Center for Disease Control and Prevention/Shanghai Institute for Prevention Medicine, Shanghai, China
| | - Ruoxi Dong
- Department of Anal & Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqun Gao
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Jiazhen Hu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xinpei Zhang
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xiaomei Wu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Bozhen Fan
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Chao Chen
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Wenjuan Xu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
6
|
Persico T, Tranquillo ML, Seracchioli R, Zuccarello D, Sorrentino U. PGT-M for Premature Ovarian Failure Related to CGG Repeat Expansion of the FMR1 Gene. Genes (Basel) 2023; 15:6. [PMID: 38275588 PMCID: PMC10815814 DOI: 10.3390/genes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Primary ovarian failure (POF) is caused by follicle exhaustion and is associated with menstrual irregularities and elevated gonadotropin levels, which lead to infertility before the age of 40 years. The etiology of POI is mostly unknown, but a heterogeneous genetic and familial background can be identified in a subset of cases. Abnormalities in the fragile X mental retardation 1 gene (FMR1) are among the most prevalent monogenic causes of POI. These abnormalities are caused by the expansion of an unstable CGG repeat in the 5' untranslated region of FMR1. Expansions over 200 repeats cause fragile X syndrome (FXS), whereas expansions between 55 and 200 CGG repeats, which are defined as a fragile X premutation, have been associated with premature ovarian failure type 1 (POF1) in heterozygous females. Preimplantation genetic testing for monogenic diseases (PGT-M) can be proposed when the female carries a premutation or a full mutation. In this narrative review, we aim to recapitulate the clinical and molecular features of POF1 and their implications in the context of PGT-M.
Collapse
Affiliation(s)
- Tiziana Persico
- Medically Assisted Procreation Center, Maternal and Child Department, Beauregard Hospital, Valle D’Aosta Local Public Health, 11100 Aoste, Italy
| | - Maria Lucrezia Tranquillo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
| | - Renato Seracchioli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (M.L.T.); (R.S.)
- Division of Gynaecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | - Daniela Zuccarello
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| | - Ugo Sorrentino
- Clinical Genetics and Epidemiology Unit, University of Padova, 35128 Padova, Italy; (D.Z.); (U.S.)
| |
Collapse
|
7
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Malcov M, Blickstein O, Brabbing-Goldstein D, Reches A, Kalma Y, Fouks Y, Azem F, Cohen Y. The association between a carrier state of FMR1 premutation and numeric sex chromosome variations. J Assist Reprod Genet 2023; 40:683-688. [PMID: 36723762 PMCID: PMC10033765 DOI: 10.1007/s10815-023-02730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Women carriers of FMR1 premutation are at increased risk of early ovarian dysfunction and even premature ovarian insufficiency. The aim of this study was to examine a possible association between FMR1 permutation and numeric sex chromosome variations. METHODS A retrospective case-control study conducted in the reproductive center of a university-affiliated medical center. The primary outcome measure was the rate of sex chromosomal numerical aberrations, as demonstrated by haplotype analyses, in FMR1 premutation carriers compared to X-linked preimplantation genetic testing for monogenic/single gene defect (PGT-M) cycles for other indications that do not affect the ovarian follicles and oocytes. RESULTS A total of 2790 embryos with a final genetic analysis from 577 IVF PGT-M cycles were included in the final analysis. Mean age was similar between the groups, however, FMR1 carriers required more gonadotropins, and more women were poor responders with three or less oocytes collected. The ratio of embryos carrying a numeric sex chromosome variation was similar: 8.3% (138/1668) of embryos in the FMR1 group compared to 7.1% (80/1122) in the controls. A subgroup analysis based on age and response to stimulation has not demonstrated a significant difference either. CONCLUSIONS Although carriers of FMR1 premutation exhibit signs of reduced ovarian response, it does not seem to affect the rate of numeric sex chromosomal variation compared to women undergoing PGT-M for other indications. This suggests that the mechanism for chromosomal number aberrations in women at advanced maternal age are different to those FMR1 premutation carriers with poor ovarian reserve.
Collapse
Affiliation(s)
- Mira Malcov
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ophir Blickstein
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dana Brabbing-Goldstein
- Genetic Institute at Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Reches
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Genetic Institute at Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Fouks
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Boston IVF-The Eugin Group, Waltham, MA, USA
| | - Foad Azem
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoni Cohen
- IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
10
|
Reyes CJF, Asano K. Between Order and Chaos: Understanding the Mechanism and Pathology of RAN Translation. Biol Pharm Bull 2023; 46:139-146. [PMID: 36724941 DOI: 10.1248/bpb.b22-00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University.,Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University.,Hiroshima Research Center for Healthy Aging, Hiroshima University
| |
Collapse
|
11
|
Hessl D, Rosselot H, Miller R, Espinal G, Famula J, Sherman SL, Todd PK, Cabal Herrera AM, Lipworth K, Cohen J, Hall DA, Leehey M, Grigsby J, Weber JD, Alusi S, Wheeler A, Raspa M, Hudson T, Sobrian SK. The International Fragile X Premutation Registry: building a resource for research and clinical trial readiness. J Med Genet 2022; 59:1165-1170. [PMID: 35701103 PMCID: PMC9691813 DOI: 10.1136/jmedgenet-2022-108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023]
Abstract
FMR1 premutation cytosine-guanine-guanine repeat expansion alleles are relatively common mutations in the general population that are associated with a neurodegenerative disease (fragile X-associated tremor/ataxia syndrome), reproductive health problems and potentially a wide range of additional mental and general health conditions that are not yet well-characterised. The International Fragile X Premutation Registry (IFXPR) was developed to facilitate and encourage research to better understand the FMR1 premutation and its impact on human health, to facilitate clinical trial readiness by identifying and characterising diverse cohorts of individuals interested in study participation, and to build community and collaboration among carriers, family members, researchers and clinicians around the world. Here, we describe the development and content of the IFXPR, characterise its first 747 registrants from 32 countries and invite investigators to apply for recruitment support for their project(s). With larger numbers, increased diversity and potentially the future clinical characterisation of registrants, the IFXPR will contribute to a more comprehensive and accurate understanding of the fragile X premutation in human health and support treatment studies.
Collapse
Affiliation(s)
- David Hessl
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA,MIND Institute, University of California Davis Medical Center, Sacramento, California, USA
| | | | - Robert Miller
- National Fragile X Foundation, McLean, Virginia, USA
| | - Glenda Espinal
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA,MIND Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Jessica Famula
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA,MIND Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA,VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, New South Wales, Australia
| | - Jonathan Cohen
- Genetic Clinics Australia, Victoria, Melbourne, Australia
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - Maureen Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jim Grigsby
- Department of Psychology, University of Colorado Denver, Denver, Colorado, USA,Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | | | | | - Anne Wheeler
- RTI International, Research Triangle Park, North Carolina, USA
| | - Melissa Raspa
- RTI International, Research Triangle Park, North Carolina, USA
| | - Tamaro Hudson
- Department of Pharmacology, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Sonya K Sobrian
- Department of Pharmacology, Howard University College of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Rosario R, Stewart HL, Choudhury NR, Michlewski G, Charlet‐Berguerand N, Anderson RA. Evidence for a fragile X messenger ribonucleoprotein 1 (FMR1) mRNA gain-of-function toxicity mechanism contributing to the pathogenesis of fragile X-associated premature ovarian insufficiency. FASEB J 2022; 36:e22612. [PMID: 36250920 PMCID: PMC9828574 DOI: 10.1096/fj.202200468rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Fragile X-associated premature ovarian insufficiency (FXPOI) is among a family of disorders caused by expansion of a CGG trinucleotide repeat sequence located in the 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene on the X chromosome. Women with FXPOI have a depleted ovarian follicle population, resulting in amenorrhea, hypoestrogenism, and loss of fertility before the age of 40. FXPOI is caused by expansions of the CGG sequence to lengths between 55 and 200 repeats, known as a FMRI premutation, however the mechanism by which the premutation drives disease pathogenesis remains unclear. Two main hypotheses exist, which describe an mRNA toxic gain-of-function mechanism or a protein-based mechanism, where repeat-associated non-AUG (RAN) translation results in the production of an abnormal protein, called FMRpolyG. Here, we have developed an in vitro granulosa cell model of the FMR1 premutation by ectopically expressing CGG-repeat RNA and FMRpolyG protein. We show that expanded CGG-repeat RNA accumulated in intranuclear RNA structures, and these aggregates were able to cause significant granulosa cell death independent of FMRpolyG expression. Using an innovative RNA pulldown, mass spectrometry-based approach we have identified proteins that are specifically sequestered by CGG RNA aggregates in granulosa cells in vitro, and thus may be deregulated as consequence of this interaction. Furthermore, we have demonstrated reduced expression of three proteins identified via our RNA pulldown (FUS, PA2G4 and TRA2β) in ovarian follicles in a FMR1 premutation mouse model. Collectively, these data provide evidence for the contribution of an mRNA gain-of-function mechanism to FXPOI disease biology.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK,Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Hazel L. Stewart
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | | | - Gracjan Michlewski
- Infection MedicineUniversity of EdinburghEdinburghUK,Zhejiang University‐University of Edinburgh InstituteZhejiang UniversityZhejiangP.R. China,Dioscuri Centre for RNA‐Protein Interactions in Human Health and DiseaseInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Nicholas Charlet‐Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM U 1258, CNRS UMR 7104, Université of StrasbourgIllkirchFrance
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Elaswad MT, Munderloh C, Watkins BM, Sharp KG, Breton E, Schisa JA. Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line. G3 GENES|GENOMES|GENETICS 2022; 12:6633935. [PMID: 35801939 PMCID: PMC9434235 DOI: 10.1093/g3journal/jkac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
One emerging paradigm of cellular organization of RNA and RNA-binding proteins is the formation of membraneless organelles. Examples of membraneless organelles include several types of ribonucleoprotein granules that form via phase separation. A variety of intracellular pH changes and posttranslational modifications, as well as extracellular stresses, can stimulate the condensation of proteins into granules. For example, the assembly of stress granules induced by oxidative stress, osmotic stress, and heat stress has been well characterized in a variety of somatic cell types. In the germ line, similar stress-induced condensation of proteins occurs; however, less is known about the role of phase separation during gamete production. Researchers who study phase transitions often make use of fluorescent reporters to study the dynamics of RNA-binding proteins during live cell imaging. In this report, we demonstrate that common conditions of live-imaging Caenorhabditis elegans can cause an inadvertent stress and trigger phase transitions of RNA-binding proteins. We show that this imaging-associated stress stimulates decondensation of multiple germ granule proteins and condensation of several P-body proteins. Proteins within larger ribonucleoprotein granules in meiotically arrested oocytes do not appear to be as sensitive to the stress as proteins in diakinesis oocytes of young hermaphrodites, with the exception of the germ granule protein PGL-1. Our results have important methodological implications for all researchers using live-cell imaging techniques. The data also suggest that the RNA-binding proteins within large ribonucleoprotein granules of arrested oocytes may have distinct phases, which we characterize in our companion article.
Collapse
Affiliation(s)
- Mohamed T Elaswad
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Chloe Munderloh
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brooklynne M Watkins
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Katherine G Sharp
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Breton
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jennifer A Schisa
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| |
Collapse
|
14
|
Expression of FMRpolyG in Peripheral Blood Mononuclear Cells of Women with Fragile X Mental Retardation 1 Gene Premutation. Genes (Basel) 2022; 13:genes13030451. [PMID: 35328005 PMCID: PMC8951797 DOI: 10.3390/genes13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55–200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.
Collapse
|
15
|
Zhang Y, Glineburg MR, Basrur V, Conlon K, Wright SE, Krans A, Hall DA, Todd PK. Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Hum Mol Genet 2022; 31:2317-2332. [PMID: 35137065 PMCID: PMC9307318 DOI: 10.1093/hmg/ddab353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - M Rebecca Glineburg
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| | | | - Kevin Conlon
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Peter K Todd
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| |
Collapse
|
16
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
17
|
Schröder C, Horsthemke B, Depienne C. GC-rich repeat expansions: associated disorders and mechanisms. MED GENET-BERLIN 2021; 33:325-335. [PMID: 38835438 PMCID: PMC11006399 DOI: 10.1515/medgen-2021-2099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/12/2021] [Indexed: 06/06/2024]
Abstract
Noncoding repeat expansions are a well-known cause of genetic disorders mainly affecting the central nervous system. Missed by most standard technologies used in routine diagnosis, pathogenic noncoding repeat expansions have to be searched for using specific techniques such as repeat-primed PCR or specific bioinformatics tools applied to genome data, such as ExpansionHunter. In this review, we focus on GC-rich repeat expansions, which represent at least one third of all noncoding repeat expansions described so far. GC-rich expansions are mainly located in regulatory regions (promoter, 5' untranslated region, first intron) of genes and can lead to either a toxic gain-of-function mediated by RNA toxicity and/or repeat-associated non-AUG (RAN) translation, or a loss-of-function of the associated gene, depending on their size and their methylation status. We herein review the clinical and molecular characteristics of disorders associated with these difficult-to-detect expansions.
Collapse
Affiliation(s)
- Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Perez BA, Shorrock HK, Banez‐Coronel M, Zu T, Romano LEL, Laboissonniere LA, Reid T, Ikeda Y, Reddy K, Gomez CM, Bird T, Ashizawa T, Schut LJ, Brusco A, Berglund JA, Hasholt LF, Nielsen JE, Subramony SH, Ranum LPW. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol Med 2021; 13:e14095. [PMID: 34632710 PMCID: PMC8573593 DOI: 10.15252/emmm.202114095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8), a dominantly inherited neurodegenerative disorder caused by a CTG•CAG expansion, is unusual because most individuals that carry the mutation do not develop ataxia. To understand the variable penetrance of SCA8, we studied the molecular differences between highly penetrant families and more common sporadic cases (82%) using a large cohort of SCA8 families (n = 77). We show that repeat expansion mutations from individuals with multiple affected family members have CCG•CGG interruptions at a higher frequency than sporadic SCA8 cases and that the number of CCG•CGG interruptions correlates with age at onset. At the molecular level, CCG•CGG interruptions increase RNA hairpin stability, and in cell culture experiments, increase p-eIF2α and polyAla and polySer RAN protein levels. Additionally, CCG•CGG interruptions, which encode arginine interruptions in the polyGln frame, increase toxicity of the resulting proteins. In summary, SCA8 CCG•CGG interruptions increase polyAla and polySer RAN protein levels, polyGln protein toxicity, and disease penetrance and provide novel insight into the molecular differences between SCA8 families with high vs. low disease penetrance.
Collapse
Affiliation(s)
- Barbara A Perez
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Hannah K Shorrock
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Monica Banez‐Coronel
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tao Zu
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lisa EL Romano
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lauren A Laboissonniere
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tammy Reid
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Yoshio Ikeda
- Department of NeurologyGunma UniversityMaebashiJapan
| | - Kaalak Reddy
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | | | - Thomas Bird
- Department of NeurologyUniversity of WashingtonSeattleWAUSA
- Geriatrics Research SectionVA Puget Sound Health Care SystemSeattleWAUSA
| | - Tetsuo Ashizawa
- Department of NeurologyHouston Methodist Research InstituteHoustonTXUSA
| | | | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorinoItaly
- Medical Genetics Units“Città della Salute e della Scienza” University HospitalTorinoItaly
| | - J Andrew Berglund
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | - Lis F Hasholt
- Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jorgen E Nielsen
- Department of NeurologyRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - SH Subramony
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
| | - Laura PW Ranum
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
19
|
Rosario R, Anderson R. The molecular mechanisms that underlie fragile X-associated premature ovarian insufficiency: is it RNA or protein based? Mol Hum Reprod 2021; 26:727-737. [PMID: 32777047 PMCID: PMC7566375 DOI: 10.1093/molehr/gaaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/30/2023] Open
Abstract
The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5′ untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Cohen Y, Nattiv N, Avrham S, Fouks Y, Friedman MR, Hasson J, Kalma Y, Azem F, Malcov M, Almog B. A decision tree model for predicting live birth in FMR1 premutation carriers undergoing preimplantation genetic testing for monogenic/single gene defects. Reprod Biomed Online 2021; 43:680-686. [PMID: 34412974 DOI: 10.1016/j.rbmo.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
RESEARCH QUESTION Can patient selection for successful preimplantation genetic testing for women who are fragile X (FMR1) premutation carriers be optimized using a decision tree analysis? This decision support tool enables a comprehensive study of a set of clinical parameters and the expected outcomes. DESIGN A retrospective case-control study analysing the results of 264 fresh and 21 frozen preimplantation genetic testing for monogenic disorders/single gene defects (PGT-M) cycles in 64 FMR1 premutation carriers. Primary outcome was live birth per cycle start. Live birth rate was calculated for the start of the ovarian stimulation cycle. Fresh and frozen embryo transfers from the same cycle were included. RESULTS The decision tree model showed that the number of cytosine guanine (CGG) repeats was only a moderate predictor for live birth, whereas an age younger than 36 years was the best predictor for live birth, followed by a collection of 14 or more oocytes. These findings were supported by the results of the logistic regression, which found that only age and oocyte number were significantly associated with live birth (P = 0.005 and 0.017, respectively). CONCLUSIONS The number of CGG repeats is a relatively poor predictor for live birth in PGT-M cycles. FMR1 premutation carriers are no different from non-carriers. Age is the best identifier of live birth, followed by the number of retrieved oocytes.
Collapse
Affiliation(s)
- Yoni Cohen
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel.
| | - Noga Nattiv
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Sarit Avrham
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Yuval Fouks
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Michal Rosenberg Friedman
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Joseph Hasson
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Yael Kalma
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Foad Azem
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Mira Malcov
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Benny Almog
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
21
|
Dysregulation of anti-Mullerian hormone expression levels in mural granulosa cells of FMR1 premutation carriers. Sci Rep 2021; 11:14139. [PMID: 34238973 PMCID: PMC8266831 DOI: 10.1038/s41598-021-93489-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
FMR1 premutation (55–200 CGG repeats) results in fragile X-associated primary ovarian insufficiency (FXPOI). We evaluated expression levels of folliculogenesis-related mediators, follicle-stimulating hormone (FSH) receptor and anti-Mullerian hormone (AMH), to gain insights into the mechanisms underlying the reduced ovarian function. Mural granulosa cells (MGCs) were collected from FMR1 premutation carriers and noncarriers undergoing IVF treatments. At baseline, MGCs of carriers demonstrated significantly higher mRNA expression levels of AMH (3.5 ± 2.2, n = 12 and 0.97 ± 0.5, n = 17, respectively; p = 0.0003) and FSH receptor (5.6 ± 2.8 and 2.7 ± 2.8, respectively; p = 0.02) and higher AMH protein expression on immunostaining. Accordingly, FMR1 premutation-transfected COV434 cells exhibited higher AMH protein expression than COV434 cells transfected with 20 CGG repeats. We conclude that FMR1 premutation may lead to dysregulation of AMH expression levels, probably due to a compensatory mechanism. Elucidating the pathophysiology of FXPOI may help in early detection of ovarian dysfunction and tailoring IVF treatments to FMR1 premutation carriers.
Collapse
|
22
|
Tseng YJ, Sandwith SN, Green KM, Chambers AE, Krans A, Raimer HM, Sharlow ME, Reisinger MA, Richardson AE, Routh ED, Smaldino MA, Wang YH, Vaughn JP, Todd PK, Smaldino PJ. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation. J Biol Chem 2021; 297:100914. [PMID: 34174288 PMCID: PMC8326427 DOI: 10.1016/j.jbc.2021.100914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36–G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length–dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Siara N Sandwith
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Eric D Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - James P Vaughn
- Division of Cancer Biology, NanoMedica LLC, Winston-Salem, North Carolina, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, Ann Arbor VA Medical Center, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
23
|
Haify SN, Buijsen RAM, Verwegen L, Severijnen LAWFM, de Boer H, Boumeester V, Monshouwer R, Yang WY, Cameron MD, Willemsen R, Disney MD, Hukema RK. Small molecule 1a reduces FMRpolyG-mediated toxicity in in vitro and in vivo models for FMR1 premutation. Hum Mol Genet 2021; 30:1632-1648. [PMID: 34077515 PMCID: PMC8369842 DOI: 10.1093/hmg/ddab143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset, progressive neurodegenerative disorder characterized by tremors, ataxia and neuropsychological problems. This disease is quite common in the general population with approximately 20 million carriers worldwide. The risk of developing FXTAS increases dramatically with age, with about 45% of male carriers over the age of 50 being affected. FXTAS is caused by a CGG-repeat expansion (CGGexp) in the fragile X mental retardation 1 (FMR1) gene. CGGexp RNA is translated into the FMRpolyG protein by a mechanism called RAN translation. Although both gene and pathogenic trigger are known, no therapeutic interventions are available at this moment. Here, we present, for the first time, primary hippocampal neurons derived from the ubiquitous inducible mouse model which is used as a screening tool for targeted interventions. A promising candidate is the repeat binding, RAN translation blocking, small molecule 1a. Small molecule 1a shields the disease-causing CGGexp from being translated into the toxic FMRpolyG protein. Primary hippocampal neurons formed FMRpolyG-positive inclusions, and upon treatment with 1a, the numbers of FMRpolyG-positive inclusions are reduced. We also describe for the first time the formation of FMRpolyG-positive inclusions in the liver of this mouse model. Treatment with 1a reduced the insoluble FMRpolyG protein fraction in the liver but not the number of inclusions. Moreover, 1a treatment had a reducing effect on the number of Rad23b-positive inclusions and insoluble Rad23b protein levels. These data suggest that targeted small molecule therapy is effective in an FXTAS mouse model and has the potential to treat CGGexp-mediated diseases, including FXTAS.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Human Genetics, LUMC, Leiden, the Netherlands
| | - Lucas Verwegen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Helen de Boer
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Roos Monshouwer
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Wong Y Yang
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Michael D Cameron
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Matthew D Disney
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Shelly KE, Candelaria NR, Li Z, Allen EG, Jin P, Nelson DL. Ectopic expression of CGG-repeats alters ovarian response to gonadotropins and leads to infertility in a murine FMR1 premutation model. Hum Mol Genet 2021; 30:923-938. [PMID: 33856019 PMCID: PMC8165648 DOI: 10.1093/hmg/ddab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023] Open
Abstract
Women heterozygous for an expansion of CGG repeats in the 5'UTR of FMR1 risk developing fragile X-associated primary ovarian insufficiency (FXPOI) and/or tremor and ataxia syndrome (FXTAS). We show that expanded CGGs, independent of FMR1, are sufficient to drive ovarian insufficiency and that expression of CGG-containing mRNAs alone or in conjunction with a polyglycine-containing peptide translated from these RNAs contribute to dysfunction. Heterozygous females from two mouse lines expressing either CGG RNA-only (RNA-only) or CGG RNA and the polyglycine product FMRpolyG (FMRpolyG+RNA) were used to assess ovarian function in aging animals. The expression of FMRpolyG+RNA led to early cessation of breeding, ovulation and transcriptomic changes affecting cholesterol and steroid hormone biosynthesis. Females expressing CGG RNA-only did not exhibit decreased progeny during natural breeding, but their ovarian transcriptomes were enriched for alterations in cholesterol and lipid biosynthesis. The enrichment of CGG RNA-only ovaries for differentially expressed genes related to cholesterol processing provided a link to the ovarian cysts observed in both CGG-expressing lines. Early changes in transcriptome profiles led us to measure ovarian function in prepubertal females that revealed deficiencies in ovulatory responses to gonadotropins. These include impairments in cumulus expansion and resumption of oocyte meiosis, as well as reduced ovulated oocyte number. Cumulatively, we demonstrated the sufficiency of ectopically expressed CGG repeats to lead to ovarian insufficiency and that co-expression of CGG-RNA and FMRpolyG lead to premature cessation of breeding. However, the expression of CGG RNA-alone was sufficient to lead to ovarian dysfunction by impairing responses to hormonal stimulation.
Collapse
Affiliation(s)
- Katharine E Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholes R Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Trevino CE, Rounds JC, Charen K, Shubeck L, Hipp HS, Spencer JB, Johnston HR, Cutler DJ, Zwick ME, Epstein MP, Murray A, Macpherson JN, Mila M, Rodriguez-Revenga L, Berry-Kravis E, Hall DA, Leehey MA, Liu Y, Welt C, Warren ST, Sherman SL, Jin P, Allen EG. Identifying susceptibility genes for primary ovarian insufficiency on the high-risk genetic background of a fragile X premutation. Fertil Steril 2021; 116:843-854. [PMID: 34016428 PMCID: PMC8494118 DOI: 10.1016/j.fertnstert.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify modifying genes that explains the risk of fragile X-associated primary ovarian insufficiency (FXPOI). DESIGN Gene-based, case/control association study, followed by a functional screen of highly ranked genes using a Drosophila model. SETTING Participants were recruited from academic and clinical settings. PATIENT(S) Women with a premutation (PM) who experienced FXPOI at the age of 35 years or younger (n = 63) and women with a PM who experienced menopause at the age of 50 years or older (n = 51) provided clinical information and a deoxyribonucleic acid sample for whole genome sequencing. The functional screen was on the basis of Drosophila TRiP lines. INTERVENTION(S) Clinical information and a DNA sample were collected for whole genome sequencing. MAIN OUTCOME MEASURES A polygenic risk score derived from common variants associated with natural age at menopause was calculated and associated with the risk of FXPOI. Genes associated with the risk of FXPOI were identified on the basis of the P-value from gene-based association test and an altered level of fecundity when knocked down in the Drosophila PM model. RESULTS The polygenic risk score on the basis of common variants associated with natural age at menopause explained approximately 8% of the variance in the risk of FXPOI. Further, SUMO1 and KRR1 were identified as possible modifying genes associated with the risk of FXPOI on the basis of an untargeted gene analysis of rare variants. CONCLUSIONS In addition to the large genetic effect of a PM on ovarian function, the additive effects of common variants associated with natural age at menopause and the effect of rare modifying variants appear to play a role in FXPOI risk.
Collapse
Affiliation(s)
| | | | - Krista Charen
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Lisa Shubeck
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Heather S Hipp
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia
| | - Jessica B Spencer
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia
| | | | - Dave J Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - James N Macpherson
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom
| | - Montserrat Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois
| | - Maureen A Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Corrine Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stephen T Warren
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia; Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Emily G Allen
- Department of Human Genetics, Emory University, Atlanta, Georgia.
| |
Collapse
|
26
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
27
|
Tusi SK, Nguyen L, Thangaraju K, Li J, Cleary JD, Zu T, Ranum LPW. The alternative initiation factor eIF2A plays key role in RAN translation of myotonic dystrophy type 2 CCUG•CAGG repeats. Hum Mol Genet 2021; 30:1020-1029. [PMID: 33856033 DOI: 10.1093/hmg/ddab098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Repeat-associated non-ATG (RAN) proteins have been reported in 11 microsatellite expansion disorders but the factors that allow RAN translation to occur and the effects of different repeat motifs and alternative AUG-like initiation codons are unclear. We studied the mechanisms of RAN translation across myotonic dystrophy type 2 (DM2) expansion transcripts with (CCUG) or without (CAGG) efficient alternative AUG-like codons. To better understand how DM2 LPAC and QAGR RAN proteins are expressed, we generated a series of CRISPR/Cas9-edited HEK293T cell lines. We show that LPAC and QAGR RAN protein levels are reduced in protein kinase R (PKR)-/- and PKR-like endoplasmic reticulum kinase (PERK)-/- cells, with more substantial reductions of CAGG-encoded QAGR in PKR-/- cells. Experiments using mutant eIF2α-S51A HEK293T cells show that p-eIF2α is required for QAGR production. In contrast, LPAC levels were only partially reduced in these cells, suggesting that both non-AUG and close-cognate initiation occur across CCUG RNAs. Overexpression of the alternative initiation factor eIF2A increases LPAC and QAGR protein levels but, notably, has a much larger effect on QAGR expressed from CAGG-expansion RNAs that lack efficient close-cognate codons. The effects of eIF2A on increasing LPAC are consistent with previous reports that eIF2A affects CUG-initiation translation. The observation that eIF2A also increases QAGR proteins is novel because CAGG expansion transcripts do not contain CUG or similarly efficient close-cognate AUG-like codons. For QAGR but not LPAC, the eIF2A-dependent increases are not seen when p-eIF2α is blocked. These data highlight the differential regulation of DM2 RAN proteins and eIF2A as a potential therapeutic target for DM2 and other RAN diseases.
Collapse
Affiliation(s)
- Solaleh Khoramian Tusi
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kiruphagaran Thangaraju
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jian Li
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
29
|
Rehnitz J, Youness B, Nguyen XP, Dietrich JE, Roesner S, Messmer B, Strowitzki T, Vogt PH. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod 2021; 27:6119639. [PMID: 33493269 DOI: 10.1093/molehr/gaab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
In humans, FMR1 (fragile X mental retardation 1) is strongly expressed in granulosa cells (GCs) of the female germline and apparently controls efficiency of folliculogenesis. Major control mechanism(s) of the gene transcription rate seem to be based on the rate of CpG-methylation along the CpG island promoter. Conducting CpG-methylation-specific bisulfite-treated PCR assays and subsequent sequence analyses of both gene alleles, revealed three variably methylated CpG domains (FMR1-VMR (variably methylated region) 1, -2, -3) and one completely unmethylated CpG-region (FMR1-UMR) in this extended FMR1-promoter-region. FMR1-UMR in the core promoter was exclusively present only in female GCs, suggesting expression from both gene alleles, i.e., escaping the female-specific X-inactivation mechanism for the second gene allele. Screening for putative target sites of transcription factors binding with CpG methylation dependence, we identified a target site for the transcriptional activator E2F1 in FMR1-VMR3. Using specific electrophoretic mobility shift assays, we found E2F1 binding efficiency to be dependent on CpG-site methylation in its target sequence. Comparative analysis of these CpGs revealed that CpG 94-methylation in primary GCs of women with normal and reduced efficiency of folliculogenesis statistically significant differences. We therefore conclude that E2F1 binding to FMR1-VMR3 in human GCs is part of an epigenetic mechanism regulating the efficiency of human folliculogenesis. Our data indicate that epigenetic mechanisms may control GC FMR1-expression rates.
Collapse
Affiliation(s)
- Julia Rehnitz
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany.,Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Berthe Youness
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Jens E Dietrich
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Sabine Roesner
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Birgitta Messmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Peter H Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Tassanakijpanich N, Hagerman RJ, Worachotekamjorn J. Fragile X premutation and associated health conditions: A review. Clin Genet 2021; 99:751-760. [PMID: 33443313 DOI: 10.1111/cge.13924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder, which causes autism and intellectual disability. The fragile X mental retardation 1 (FMR1) gene is silenced when cytosine-guanine-guanine (CGG) triplet repeats exceed 200, which is the full mutation that causes FXS. Carriers of FXS have a CGG repeat between 55 and 200, which is defined as a premutation and transcription of the gene is overactive with high levels of the FMR1 mRNA. Most carriers of the premutation have normal levels of fragile X mental retardation protein (FMRP) and a normal intelligence, but in the upper range of the premutation (120-200) the FMRP level may be lower than normal. The clinical problems associated with the premutation are caused by the RNA toxicity associated with increased FMR1 mRNA levels, although for some mildly lowered FMRP can cause problems associated with FXS. The RNA toxicity causes various health problems in the carriers including but not limited to fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorders. Since some individuals with neuropsychiatric problems do not meet the severity for a diagnosis of a "disorder" then the condition can be labeled as fragile X premutation associated condition (FXPAC). Physicians must be able to recognize these health problems in the carriers and provide appropriate management.
Collapse
Affiliation(s)
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | |
Collapse
|
31
|
Asamitsu S, Yabuki Y, Ikenoshita S, Kawakubo K, Kawasaki M, Usuki S, Nakayama Y, Adachi K, Kugoh H, Ishii K, Matsuura T, Nanba E, Sugiyama H, Fukunaga K, Shioda N. CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. SCIENCE ADVANCES 2021; 7:7/3/eabd9440. [PMID: 33523882 PMCID: PMC7806243 DOI: 10.1126/sciadv.abd9440] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 05/25/2023]
Abstract
Fragile X-related tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease caused by CGG triplet repeat expansions in FMR1, which elicit repeat-associated non-AUG (RAN) translation and produce the toxic protein FMRpolyG. We show that FMRpolyG interacts with pathogenic CGG repeat-derived RNA G-quadruplexes (CGG-G4RNA), propagates cell to cell, and induces neuronal dysfunction. The FMRpolyG polyglycine domain has a prion-like property, preferentially binding to CGG-G4RNA. Treatment with 5-aminolevulinic acid, which is metabolized to protoporphyrin IX, inhibited RAN translation of FMRpolyG and CGG-G4RNA-induced FMRpolyG aggregation, ameliorating aberrant synaptic plasticity and behavior in FXTAS model mice. Thus, we present a novel therapeutic strategy to target G4RNA prionoids.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Ikenoshita
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Kawakubo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Moe Kawasaki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Kaori Adachi
- Division of Genomic Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Kazuhiro Ishii
- Department of the Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tohru Matsuura
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimono, Japan
| | - Eiji Nanba
- Office for Research Strategy, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Tassanakijpanich N, Cohen J, Cohen R, Srivatsa UN, Hagerman RJ. Cardiovascular Problems in the Fragile X Premutation. Front Genet 2020; 11:586910. [PMID: 33133171 PMCID: PMC7578382 DOI: 10.3389/fgene.2020.586910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
There is a dearth of information about cardiovascular problems in fragile X premutation carriers who have 55–200 CGG repeats in fragile X mental retardation 1 (FMR1) gene. The FMR1 expansion in the premutation range leads to toxic RNA gain-of-function resulting in cellular dysregulation. The mechanism of RNA toxicity underlies all of the premutation disorders including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorder. Cardiovascular problems particularly autonomic dysfunction, hypertension, and cardiac arrhythmias are not uncommon in premutation carriers. Some arterial problems and valvular heart diseases have also been reported. This article reviews cardiovascular problems in premutation carriers and discusses possible contributing mechanisms including RNA toxicity and mild fragile X mental retardation protein deficiency. Further research studies are needed in order to prove a direct association of the cardiovascular problems in fragile X premutation carriers because such knowledge will lead to better preventative treatment.
Collapse
Affiliation(s)
- Nattaporn Tassanakijpanich
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Rashelle Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Uma N Srivatsa
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, School of Medicine, Sacramento, CA, United States
| |
Collapse
|
33
|
Cao Y, Peng Y, Kong HE, Allen EG, Jin P. Metabolic Alterations in FMR1 Premutation Carriers. Front Mol Biosci 2020; 7:571092. [PMID: 33195417 PMCID: PMC7531624 DOI: 10.3389/fmolb.2020.571092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
FMR1 gene premutation carriers are at risk of developing Fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. Currently the development of biomarkers and effective treatments in FMR1 premutations is still in its infancy. Recent metabolic studies have shown novel findings in asymptomatic FMR1 premutation carriers and FXTAS, which provide promising insight through identification of potential biomarkers and therapeutic pathways. Here we review the latest advancements of the metabolic alterations found in asymptomatic FMR1 premutation carriers and FXTAS, along with our perspective for future studies in this emerging field.
Collapse
Affiliation(s)
- Yiqu Cao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
34
|
Are ovarian response and pregnancy rates similar in selected FMR1 premutated and mutated patients undergoing preimplantation genetic testing? J Assist Reprod Genet 2020; 37:1675-1683. [PMID: 32483686 DOI: 10.1007/s10815-020-01809-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To assess if the ovarian response of FMR1 premutated women undergoing preimplantation genetic testing (PGT) for Fragile X syndrome is lower compared with fully mutated patients, due to their frequent premature ovarian failure. METHODS In a retrospective cohort study from January 2009 to March 2019, we compared PGT outcomes in 18 FMR1 premutated women and 12 fully mutated women and aimed to identify predictive factors of stimulation outcomes. RESULTS Eighty-six IVF/PGT-M cycles for FMR1 PGT were analyzed. Premutation and full mutation patients were comparable in terms of age, body mass index (BMI), basal FSH, antral follicular count, and cycle length. However, premutation carriers had significantly lower AMH (1.9 versus 4.0 ng/mL, p = 0.0167). Premutated patients required higher doses of FSH (2740 versus 1944 IU, p = 0.0069) but had similar numbers of metaphase II oocytes (7.1 versus 6.6, p = 0.871) and embryos (5.6 versus 4.9, p = 0. 554). Pregnancy rates (37.1% versus 13.3%, p = 0.1076) were not statistically different in both groups. CONCLUSION In spite of lower ovarian reserve and thanks to an increased total dose of FSH, FMR1 premutated selected patients seem to have similar ovarian response as fully mutated patients. Neither the number of CGG repeats in FMR1 gene nor FMR1 mutation status was good predictors of the number of retrieved oocytes.
Collapse
|
35
|
An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency. J Assist Reprod Genet 2020; 37:1313-1322. [PMID: 32377997 PMCID: PMC7311620 DOI: 10.1007/s10815-020-01774-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a "full mutation" causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian insufficiency (FXPOI), are referred to as the FMR1 premutation (PM). The objective of this paper was to formulate a theory to explain the Mechanism for FXPOI.Recent research on fragile X syndrome and FXTAS has led to sophisticated theories about the mechanisms underlying these diseases. It has been proposed that similar mechanisms underlie FXPOI. Utilizing recent research on FXTAS, but a more detailed application of ovarian physiology, we present a more ovarian specific theory as to the primary mechanism explaining the development of FXPOI.The FXPOI phenotype may best be viewed as derivative of the observation that fragile X PM carriers experience menopause an average of 5 years earlier than non-carriers. Women carrying the PM experience an earlier menopause because of an accelerated activation of their primordial follicle pool. This acceleration of primordial follicle activation occurs, in part, because of diminished AMH production. AMH production is diminished because of accelerated atresia of early antral follicles. This accelerated atresia likely occurs because the fragile X PM leads to a slowing of the rate of granulosa cell mitosis in some follicles.
Collapse
|
36
|
Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis 2020; 136:104740. [PMID: 31927143 PMCID: PMC7027994 DOI: 10.1016/j.nbd.2020.104740] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Brett Dufour
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
37
|
Friedman-Gohas M, Elizur SE, Dratviman-Storobinsky O, Aizer A, Haas J, Raanani H, Orvieto R, Cohen Y. FMRpolyG accumulates in FMR1 premutation granulosa cells. J Ovarian Res 2020; 13:22. [PMID: 32101156 PMCID: PMC7045455 DOI: 10.1186/s13048-020-00623-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Fragile X premutation (Amplification of CGG number 55–200) is associated with increased risk for fragile X-Associated Premature Ovarian Insufficiency (FXPOI) in females and fragile X-associated tremor/ataxia syndrome (FXTAS) predominantly in males. Recently, it has been shown that CGG repeats trigger repeat associated non-AUG initiated translation (RAN) of a cryptic polyglycine-containing protein, FMRpolyG. This protein accumulates in ubiquitin-positive inclusions in neuronal brain cells of FXTAS patients and may lead to protein-mediated neurodegeneration. FMRpolyG inclusions were also found in ovary stromal cells of a FXPOI patient. The role of FMRpolyG expression has not been thoroughly examined in folliculogenesis related cells. The main goal of this study is to evaluate whether FMRpolyG accumulates in mural granulosa cells of FMR1 premutation carriers. Following FMRpolyG detection, we aim to examine premutation transfected COV434 as a suitable model used to identify RAN translation functions in FXPOI pathogenesis. Results FMRpolyG and ubiquitin immunostained mural granulosa cells from six FMR1 premutation carriers demonstrated FMRpolyG aggregates. However, co-localization of FMRpolyG and ubiquitin appeared to vary within the FMR1 premutation carriers’ group as three exhibited partial ubiquitin and FMRpolyG double staining and three premutation carriers demonstrated FMRpolyG single staining. None of the granulosa cells from the five control women expressed FMRpolyG. Additionally, human ovarian granulosa tumor, COV434, were transfected with two plasmids; both expressing 99CGG repeats but only one enables FMRpolyG expression. Like in granulosa cells from FMR1 premutation carriers, FMRpolyG aggregates were found only in COV434 transfected with expended CGG repeats and the ability to express FMRpolyG. Conclusions Corresponding with previous studies in FXTAS, we demonstrated accumulation of FMRpolyG in mural granulosa cells of FMR1 premutation carriers. We also suggest that following further investigation, the premutation transfected COV434 might be an appropriate model for RAN translation studies. Detecting FMRpolyG accumulation in folliculogenesis related cells supports previous observations and imply a possible common protein-mediated toxic mechanism for both FXPOI and FXTAS.
Collapse
Affiliation(s)
- M Friedman-Gohas
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - S E Elizur
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - O Dratviman-Storobinsky
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - A Aizer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - J Haas
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - H Raanani
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - R Orvieto
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - Y Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. .,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel.
| |
Collapse
|
38
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Sacino AN, Prokop S, Walsh MA, Adamson J, Subramony SH, Krans A, Todd PK, Giasson BI, Yachnis AT. Fragile X-associated tremor ataxia syndrome with co-occurrent progressive supranuclear palsy-like neuropathology. Acta Neuropathol Commun 2019; 7:158. [PMID: 31665069 PMCID: PMC6820960 DOI: 10.1186/s40478-019-0818-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer's disease (AD) and Parkinson's disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide. In addition, we describe prominent neuronal and glial tau pathology representing changes seen in progressive supranuclear palsy (PSP). The highest abundance of the respective pathological changes was seen in distinct brain regions indicating an incidental, rather than causal correlation.
Collapse
|
40
|
Krans A, Skariah G, Zhang Y, Bayly B, Todd PK. Neuropathology of RAN translation proteins in fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun 2019; 7:152. [PMID: 31665086 PMCID: PMC6821001 DOI: 10.1186/s40478-019-0782-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
CGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames. However, the relative abundance of these proteins in FXTAS brains and their co-localization with each other and NIIs is lacking. Here we describe rater-blinded assessment of immunohistochemical and immunofluorescence staining with newly generated antibodies to different CGG RAN translation products in FXTAS and control brains as well as co-staining with ubiquitin, p62/SQSTM1, and ubiquilin 2. We find that both FMRpolyG and a second CGG repeat derived RAN translation product, FMRpolyA, accumulate in aggregates in FXTAS brains. FMRpolyG is a near-obligate component of both ubiquitin-positive and p62-positive NIIs in FXTAS, with occurrence of aggregates in 20% of all hippocampal neurons and > 90% of all inclusions. A subset of these inclusions also stain positive for the ALS/FTD associated protein ubiquilin 2. Ubiquitinated inclusions and FMRpolyG+ aggregates are rarer in cortex and cerebellum. Intriguingly, FMRpolyG staining is also visible in control neuronal nuclei. In contrast to FMRpolyG, staining for FMRpolyA and CCG antisense derived RAN translation products were less abundant and less frequent components of ubiquitinated inclusions. In conclusion, RAN translated FMRpolyG is a common component of ubiquitin and p62 positive inclusions in FXTAS patient brains.
Collapse
Affiliation(s)
- Amy Krans
- University of Michigan Medical School, Ann Arbor, USA
- Ann Arbor VA Medical Center, Ann Arbor, MI, USA
| | - Geena Skariah
- University of Michigan Medical School, Ann Arbor, USA
| | - Yuan Zhang
- University of Michigan Medical School, Ann Arbor, USA
| | - Bryana Bayly
- University of Michigan Medical School, Ann Arbor, USA
| | - Peter K Todd
- University of Michigan Medical School, Ann Arbor, USA.
- Ann Arbor VA Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Green KM, Sheth UJ, Flores BN, Wright SE, Sutter AB, Kearse MG, Barmada SJ, Ivanova MI, Todd PK. High-throughput screening yields several small-molecule inhibitors of repeat-associated non-AUG translation. J Biol Chem 2019; 294:18624-18638. [PMID: 31649034 DOI: 10.1074/jbc.ra119.009951] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation is a noncanonical translation initiation event that occurs at nucleotide-repeat expansion mutations that are associated with several neurodegenerative diseases, including fragile X-associated tremor ataxia syndrome (FXTAS), ALS, and frontotemporal dementia (FTD). Translation of expanded repeats produces toxic proteins that accumulate in human brains and contribute to disease pathogenesis. Consequently, RAN translation constitutes a potentially important therapeutic target for managing multiple neurodegenerative disorders. Here, we adapted a previously developed RAN translation assay to a high-throughput format to screen 3,253 bioactive compounds for inhibition of RAN translation of expanded CGG repeats associated with FXTAS. We identified five diverse small molecules that dose-dependently inhibited CGG RAN translation, while relatively sparing canonical translation. All five compounds also inhibited RAN translation of expanded GGGGCC repeats associated with ALS and FTD. Using CD and native gel analyses, we found evidence that three of these compounds, BIX01294, CP-31398, and propidium iodide, bind directly to the repeat RNAs. These findings provide proof-of-principle supporting the development of selective small-molecule RAN translation inhibitors that act across multiple disease-causing repeats.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Udit J Sheth
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandra B Sutter
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael G Kearse
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105.
| |
Collapse
|
42
|
Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, Todd PK. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep 2019; 20:e47498. [PMID: 31347257 PMCID: PMC6726903 DOI: 10.15252/embr.201847498] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Fang He
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Department of Biological and Health SciencesTexas A&M University, KingsvilleKingsvilleTXUSA
| | - Ahmed M Malik
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | | | - Katelyn M Green
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Sam Natla
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Brittany N Flores
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Amy Krans
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | | | - Sami J Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Peter K Todd
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Ann Arbor VA Medical CenterAnn ArborMIUSA
| |
Collapse
|
43
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
44
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Elizur SE, Friedman Gohas M, Dratviman-Storobinsky O, Cohen Y. Pathophysiology Mechanisms in Fragile-X Primary Ovarian Insufficiency. Methods Mol Biol 2019; 1942:165-171. [PMID: 30900184 DOI: 10.1007/978-1-4939-9080-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Women who carry the FMR1 premutation may suffer from ongoing deterioration of ovarian function. The lucidity of the molecular mechanism of FXTAS is emerging and findings from research in the field of FXTAS could elucidate the pathogenesis of FXPOI. To date there are three possible mechanisms for ovarian dysfunction in FMR1 permutation carriers. The first is the RNA toxic gain-of-function mechanism initiating loss of function of over 30 specific RNA-binding proteins. The second is associated to the formation of an abnormal polyglycine-containing protein (FMRpolyG), and the third is related to novel lncRNAs, named FMR4 and FMR6. Herein we describe our laboratory methodology, focusing on the culturing and manipulation of granulosa cells from human female premutation carriers, trying to reveal the actual possible mechanisms liable to FXPOI. Detecting the precise pathways in premutation carrier might facilitate in offering these women the opportunity to make an informed decision regarding their reproductive and family planning.
Collapse
Affiliation(s)
- Shai E Elizur
- IVF unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- The Fertility Research Laboratory, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Moran Friedman Gohas
- The Fertility Research Laboratory, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Olga Dratviman-Storobinsky
- IVF unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Yoram Cohen
- IVF unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel.
- The Fertility Research Laboratory, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel.
| |
Collapse
|
46
|
Fink DA, Nelson LM, Pyeritz R, Johnson J, Sherman SL, Cohen Y, Elizur SE. Fragile X Associated Primary Ovarian Insufficiency (FXPOI): Case Report and Literature Review. Front Genet 2018; 9:529. [PMID: 30542367 PMCID: PMC6278244 DOI: 10.3389/fgene.2018.00529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Abnormalities in the X-linked FMR1 gene are associated with a constellation of disorders, which have broad and profound implications for the person first diagnosed, and extended family members of all ages. The rare and pleiotropic nature of the associated disorders, both common and not, place great burdens on (1) the affected families, (2) their care providers and clinicians, and (3) investigators striving to conduct research on the conditions. Fragile X syndrome, occurring more severely in males, is the leading genetic cause of intellectual disability. Fragile X associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disorder seen more often in older men. Fragile X associated primary ovarian insufficiency (FXPOI) is a chronic disorder characterized by oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. There may be significant morbidity due to: (1) depression and anxiety related to the loss of reproductive hormones and infertility; (2) reduced bone mineral density; and (3) increased risk of cardiovascular disease related to estrogen deficiency. Here we report the case of a young woman who never established regular menses and yet experienced a 5-year diagnostic odyssey before establishing a diagnosis of FXPOI despite a known family history of fragile X syndrome and early menopause. Also, despite having clearly documented FXPOI the woman conceived spontaneously and delivered two healthy children. We review the pathophysiology and management of FXPOI. As a rare disease, the diagnosis of FXPOI presents special challenges. Connecting patients and community health providers with investigators who have the requisite knowledge and expertise about the FMR1 gene and FXPOI would facilitate both patient care and research. There is a need for an international natural history study on FXPOI. The effort should be coordinated by a global virtual center, which takes full advantage of mobile device communication systems.
Collapse
Affiliation(s)
- Dorothy A Fink
- Hospital for Special Surgery, New York, NY, United States
| | | | - Reed Pyeritz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Josh Johnson
- University of Colorado, Denver, CO, United States
| | | | - Yoram Cohen
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| | - Shai E Elizur
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
48
|
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res 2018; 1693:43-54. [PMID: 29453961 PMCID: PMC6010627 DOI: 10.1016/j.brainres.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5'UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity.
Collapse
Affiliation(s)
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran's Affairs Medical Center, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
49
|
Allen EG, Glicksman A, Tortora N, Charen K, He W, Amin A, Hipp H, Shubeck L, Nolin SL, Sherman SL. FXPOI: Pattern of AGG Interruptions Does not Show an Association With Age at Amenorrhea Among Women With a Premutation. Front Genet 2018; 9:292. [PMID: 30123240 PMCID: PMC6086008 DOI: 10.3389/fgene.2018.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) occurs in about 20% of women who carry a premutation allele (55–200 CGG repeats). These women develop hypergonadotropic hypogonadism and have secondary amenorrhea before age 40. A non-linear association with repeat size and risk for FXPOI has been seen in multiple studies women with a premutation: those with a mid-range of repeats are at highest risk (∼70–100 CGG repeats). Importantly, not all carriers with 70–100 repeats experience FXPOI. We investigated whether AGG interruptions, adjusted for repeat size, impacted age at secondary amenorrhea. We have reproductive history information and AGG interruption data on 262 premutation women: 164 had an established age at amenorrhea (AAA) (for some, age at onset of FXPOI) or menopause, 16 had a surgery involving the reproductive system such as a hysterectomy, and 82 women were still cycling at the last interview. Reproductive status was determined using self-report reproductive questionnaires and interviews with a reproductive endocrinologist. For each of these 262 women, FMR1 repeat size and number of AGG interruptions were determined. We confirmed the association of repeat size with AAA or menopause among women with a premutation. As expected, both premutation repeat size and the quadratic form of repeat size (i.e., squared term) were significant in a survival analysis model predicting AAA (p < 0.0001 for both variables). When number of AGG interruptions was added to the model, this variable was not significant (p = 0.59). Finally, we used a regression model based on the 164 women with established AAA to estimate the proportion of variance in AAA explained by repeat size and its squared term. Both terms were again highly significant (p < 0.0001 for both), but together only explained 13% of the variation in AAA. The non-linear association between AAA and FMR1 repeat size has been described in several studies. We have determined that AGG interruption pattern does not contribute to this association. Because only 13% of the variation is described using repeat size, it is clear that further research of FXPOI is needed to identify other factors that affect the risk for FXPOI.
Collapse
Affiliation(s)
- Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Heather Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
50
|
Derbis M, Konieczny P, Walczak A, Sekrecki M, Sobczak K. Quantitative Evaluation of Toxic Polyglycine Biosynthesis and Aggregation in Cell Models Expressing Expanded CGG Repeats. Front Genet 2018; 9:216. [PMID: 29971092 PMCID: PMC6018535 DOI: 10.3389/fgene.2018.00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expanded CGG (CGGexp) trinucleotides in the 5′UTR of the FMR1 gene encoding fragile X mental retardation protein (FMRP). The patients, with the number of the repeats ranging from 55 to 200, show specific manifestation of clinical symptoms that include intention tremor, gait ataxia, cognitive deficits, and brain atrophy. Accumulation of toxic polyglycine (FMRpolyG), a by-product of the CGGexp repeat-associated non-ATG (RAN) translation, is considered to be one of the main factors triggering neurodegenerative processes in FXTAS patients. Nevertheless, the nature of the FMRpolyG-induced cell damage, especially in the context of its soluble and inclusion-associated forms, is still elusive. Targeting either biosynthesis, cellular stability or aggregation capacity of toxic FMRpolyG could be considered as a potential therapeutic strategy for FXTAS. Therefore, we tested a variety of quantitative methods based on forced expression of genetic constructs carrying CGGexp repeats in the context of the FMR1 5′UTR fused to GFP, mCherry or Firefly luciferase gene in or out of frame to the polyglycine encoding sequence. We show that FMRpolyG translation either from native or an AUG-induced start codon as well as the translation yield of the FMRP open reading frame equivalent located downstream of the CGGexp element can be effectively estimated using fluorescence microscopy, flow cytometry or luciferase assay. We also quantitatively estimated soluble fraction and insoluble form of FMRpolyG aggregated in foci using an electrophoretic separation of cell lysates and fluorescence microscopy, respectively. Importantly, we show that dependent on a fusion tag, FMRpolyG has a different potential for aggregate formation. Our established protocols enable sensitive tracking of FMRP and FMRpolyG quantitative and qualitative changes after treatment with potential therapeutic agents for FXTAS. Furthermore, they can be modified for application to other RAN translation- and aggregation-related diseases.
Collapse
Affiliation(s)
- Magdalena Derbis
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|