1
|
Mahema S, Roshni J, Raman J, Ahmad SF, Al-Mazroua HA, Ahmed SSSJ. Molecular Regulator Driving Endometriosis Towards Endometrial Cancer: A Multi-Scale Computational Investigation to Repurpose Anti-Cancer drugs. Cell Biochem Biophys 2024; 82:3367-3381. [PMID: 39042184 DOI: 10.1007/s12013-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Endometriosis is a gynecological disorder among reproductive-aged women. Recent epidemiological investigations suggest endometriosis increases the risk of endometrial cancer. However, the molecular entity leading to endometriosis-to-endometrial cancer is largely unknown. This study aimed to combine a variety of computational approaches to identify the key therapeutic target promoting endometriosis-to-endometrial cancer and screen potential inhibitors against target to prevent cancer development. Our systematic investigations, includes transcriptomic profiling, protein network, pharmacophore modeling, docking, binding free energy calculation, dynamics simulation, and quantum mechanics. The gene expression analysis on endometriosis and endometrial cancer was performed and showed 108 shared upregulated genes in both conditions. Further construction of interaction network with 108 genes showed intercellular adhesion molecule 1 (ICAM1) to be a crucial molecule with a high degree of connectivity that influences vital mechanisms related to cancer pathways. We then generated ligand-based pharmacophore models using established ICAM1 inhibitors. Among the models, the ADRRR_8 pharmacophore exhibited a robust area under curve (AUC = 0.83), was employed to screen 1739 anti-cancer drugs. On screening, 421 anti-cancer drugs displayed ICAM1-inhibiting pharmacophore features. Further, the docking of 421 drugs with ICAM1 showed lanreotide (-7.80 kcal/mol) with better affinity than the reference ICAM1 inhibitor (-3.59 kcal/mol). Further validation though binding free energy and dynamics simulation of the lanreotide-ICAM1 complex showed a high binding affinity of -55.90 kcal/mol and contributed stable confirmation. According to quantum chemical calculations, lanreotide's electronic properties favour ICAM1 binding with highest occupied molecular orbital was -6.91 eV and lowest unoccupied molecular orbital was -3.93 eV. Our study supports using lanreotide to treat endometriosis, which could delay or prevent endometrial cancer. These predictions need to be confirmed and examined to determine the use of lanreotide in endometriosis treatment.
Collapse
Affiliation(s)
- S Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Jency Roshni
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Janaki Raman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Višnić A, Barišić D, Čanadi Jurešić G, Sušanj Šepić T, Smiljan Severinski N. Identification of urine biomarkers of endometriosis-Protein mass spectrometry. Am J Reprod Immunol 2024; 91:e13856. [PMID: 38709906 DOI: 10.1111/aji.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Endometriosis is a chronic inflammatory disease that leads to a series of pathological reactions. The basis is a changed proinflammatory activated immune system, which results in more pronounced oxidative stress, disturbed function of proteolysis and cell apoptosis. These processes are crucial in the development of the disease because their dysfunctional activities cause the progression of the disease. It is believed that the proteins excreted in the urine interact with each other and promote pathological processes in endometriosis. METHODS We analyzed the urine proteome of patients and aimed to detect a potential protein biomarker for endometriosis in the urine proteome. We collected urine samples from 16 patients with endometriosis and 16 patients in the control group with functional ovarian cysts. The diagnosis for all patients was confirmed through pathohistological analysis. After the preanalytical preparation of the urine, chromatography and mass spectrometry (LC-MS/MS) used the technology of urine proteome analysis. RESULTS The main finding was a significantly different concentration of 14 proteins in the urine samples. We recorded a considerably higher concentration of proteins that have a significant role in activating the immune system (SELL), iron metabolism (HAMP) and cell apoptosis (CHGA) in endometriosis compared to controls. Proteins having an antioxidant function (SOD1) and a role in proteolysis of the extracellular matrix (MMP-9) were significantly reduced in endometriosis compared to controls. CONCLUSION Consistent with the known pathogenesis of endometriosis, the study results complement the pathological responses that occur with disease progression.
Collapse
Affiliation(s)
- Alenka Višnić
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Institute of Human Reproduction and Endocrinology, Rijeka, Croatia
| | | | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tina Sušanj Šepić
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Institute of Human Reproduction and Endocrinology, Rijeka, Croatia
| | - Neda Smiljan Severinski
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Institute of Human Reproduction and Endocrinology, Rijeka, Croatia
| |
Collapse
|
4
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
5
|
Zhang H, Mo Y, Wang L, Zhang H, Wu S, Sandai D, Shuid AN, Chen X. Potential shared pathogenic mechanisms between endometriosis and inflammatory bowel disease indicate a strong initial effect of immune factors. Front Immunol 2024; 15:1339647. [PMID: 38660311 PMCID: PMC11041628 DOI: 10.3389/fimmu.2024.1339647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD. Methods Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects. Results 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD. Discussion Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.
Collapse
Affiliation(s)
- Haolong Zhang
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yaxin Mo
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Ling Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haoling Zhang
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Sen Wu
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmad Naqib Shuid
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Xingbei Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
7
|
Nasiri N, Babaei S, Moini A, Eftekhari-Yazdi P. Controlling Semi-Invasive Activity of Human Endometrial Stromal Cells by Inhibiting NF-kB Signaling Pathway Using Aloe-emodin and Aspirin. J Reprod Infertil 2022; 22:227-240. [PMID: 34987984 PMCID: PMC8669405 DOI: 10.18502/jri.v22i4.7648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Inflammation and its master regulator, Nuclear Factor-kB (NF-kB), have been implicated in the development of endometriosis. Inhibition of NF-kB pathway using small molecules ameliorated disease progression and reduced the lesion size; nevertheless, the underlying mechanism is not fully understood. Therefore, this study, is an attempt to assess whether inhibiting NF-kB signaling by aloe-emodin (AE) or aspirin (Asp), as anti-inflammatory compounds, can suppresses the invasive activity of human endometrial stromal cells at stage IV endometriosis. Methods: The eutopic and healthy endometrial biopsies from a total of 8 infertile women with confirmed endometriosis and 8 women without endometriosis were digested and the single cells were cultured. Gene and protein markers of proliferation, migration, adhesion, and invasion of eutopic endometrial stromal cells (EuESCs) with and without treatment with AE or Asp, as well as control endometrial stromal cells (CESCs) was analyzed using q-PCR and immunofluorescence staining, respectively. Comparison between groups was performed using one-way ANOVA and the Bonferroni post hoc and p≤0.5 was considered statistically significant. Results: There was an association between NF-kB overexpression and higher proliferation/adhesion capacity in EuESCs. EuESCs (at stage IV endometriosis) displayed no invasive and migratory behaviors. Pre-treatment of EuESCs with AE or Asp significantly attenuated NF-kB expression and reduced proliferative, adhesive, invasive, and migratory activity of endometrial cells (p≤0.5). Conclusion: Eutopic endometrial stromal cells seem to have a semi-invasive activity which is largely suppressed by AE or Asp. It can be suggested that both Asp and AE (as potent NF-kB inhibitors) can be used as a supplement in conventional endometriosis treatments.
Collapse
Affiliation(s)
- Nahid Nasiri
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Babaei
- Department of Developmental Biology, Factually of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Obstetrics and Gynecology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
8
|
LINC01133 Inhibits Invasion and Promotes Proliferation in an Endometriosis Epithelial Cell Line. Int J Mol Sci 2021; 22:ijms22168385. [PMID: 34445100 PMCID: PMC8395043 DOI: 10.3390/ijms22168385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 01/04/2023] Open
Abstract
Endometriosis is a common gynecological disorder characterized by ectopic growth of endometrium outside the uterus and is associated with chronic pain and infertility. We investigated the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA that has been implicated in several types of cancer. We found that LINC01133 is upregulated in ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed genes indicated that cell proliferation and migration pathways were affected in line with the observed phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein level, which together with the quantification of the DNA content using fluorescence-activated cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin, which could explain changes in the cytoskeleton and cellular migration. These results indicate that endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the cellular proliferation and migration pathways.
Collapse
|
9
|
Wu J, Fang X, Xia X. Identification of Key Genes and Pathways associated with Endometriosis by Weighted Gene Co-expression Network Analysis. Int J Med Sci 2021; 18:3425-3436. [PMID: 34522169 PMCID: PMC8436105 DOI: 10.7150/ijms.63541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Endometriosis is a common gynecological disorder with high rates of infertility and pelvic pain. However, its pathogenesis and diagnostic biomarkers remain unclear. This study aimed to elucidate potential hub genes and key pathways associated with endometriosis in ectopic endometrium (EC) and eutopic endometrium (EU). Material and Method: EC and EU-associated microarray datasets were obtained from the gene expression omnibus (GEO) database. Gene set enrichment analysis was performed to obtain further biological insight into the EU and EC-associated genes. Weighted gene co-expression network analysis (WGCNA) was performed to find clinically significant modules of highly-correlated genes. The hub genes that belong to both the weighted gene co-expression network and protein-protein interaction (PPI) network were identified using a Venn diagram. Results: We obtained EC and EU-associated microarray datasets GSE7305 and GSE120103. Genes in the EC were mainly enriched in the immune response and immune cell trafficking, and genes in the EU were mainly enriched in stress response and steroid hormone biosynthesis. PPI networks and weighted gene co-expression networks were constructed. An EC-associated blue module and an EU-associated magenta module were identified, and their function annotations revealed that hormone receptor signaling or inflammatory microenvironments may promote EU passing through the oviducts and migrating to the ovarian surfaces, and adhesion and immune correlated genes may induce the successful ectopic implantation of the endometrium (EC). Twelve hub genes in the EC and sixteen hub genes in the EU were recognized and further validated in independent datasets. Conclusion: Our study identified, for the first time, the hub genes and enrichment pathways in the EC and EU using WGCNA, which may provide a comprehensive understanding of the pathogenesis of endometriosis and have important clinical implications for the treatment and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Jingni Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
10
|
Liu Y, Ma J, Zhang L, Lin J, Liu X. Overexpressed MPS-1 contributes to endometrioma development through the NF-κB signaling pathway. Reprod Biol Endocrinol 2021; 19:111. [PMID: 34266426 PMCID: PMC8281640 DOI: 10.1186/s12958-021-00796-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynecological disease that shares some characteristics with malignant tumors and affects approximately 10% of women of reproductive age. Endometrioma refers to endometriosis that appears in the ovary. Metallopanstimulin-1 (MPS-1) is a component of the 40S subunit of ribosomes that has extra-ribosomal functions that contribute to the development of diseases. This study aimed to explore the expression pattern and role of MPS-1 in endometrioma development. METHODS Quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay were used to determine the expression of MPS-1 in patients with endometrioma. Following the successful knockdown of MPS-1 by siRNA, CCK-8 assays, flow cytometry, and transwell assays were performed to detect ectopic endometrial stromal cells (EcESCs) proliferation, the rate of apoptosis, and cell cycle, migration, and invasion, respectively. Western blotting was used to explore the effect of MPS-1 knockdown on protein levels in the NF-κB signaling pathway. RESULTS The expression of MPS-1 was significantly higher in endometrioma and the serum of endometrioma patients than in the patients without endometriosis. In addition, the downregulation of MPS-1 expression inhibited EcESCs proliferation, migration, and invasion. This downregulation led to the arrest of the EcESCs cycle in the G0/G1 phase and apoptosis and depressed the NF-κB signaling pathway. CONCLUSION MPS-1 can regulate EcESCs proliferation, motility, invasion, apoptosis, and cell cycle via the NF-κB signaling pathway in endometrioma. This may contribute to the formation or development of endometriotic foci. This study suggests the potential role of MPS-1 in the pathogenesis of endometriosis and enabled further research into the use of MPS-1 in the clinical diagnosis of endometrioma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Junyan Ma
- Department of Key Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Liqi Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Jun Lin
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China.
| | - Xiaohua Liu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
11
|
Kimber-Trojnar Ż, Pilszyk A, Niebrzydowska M, Pilszyk Z, Ruszała M, Leszczyńska-Gorzelak B. The Potential of Non-Invasive Biomarkers for Early Diagnosis of Asymptomatic Patients with Endometriosis. J Clin Med 2021; 10:2762. [PMID: 34201813 PMCID: PMC8268879 DOI: 10.3390/jcm10132762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a disease that affects women of reproductive age and has a significantly negative impact on their well-being. The main symptoms are dysmenorrhoea, chronic pelvic pain and infertility. In many patients the diagnostic process is very long and can take up to 8-12 years. Laparoscopy, an invasive method, is still necessary to confirm the diagnosis. Therefore, development of more effective diagnostic markers appears to be of the utmost importance for early diagnosis of endometriosis and provision of appropriate treatment. From a clinical point of view, detection of early-stage endometriosis in asymptomatic patients is an ideal situation since early diagnosis of endometriosis may delay the onset of symptoms as well as prevent progression and complications. In the meantime, Cancer Antigen 125 (CA-125) is still the most frequently studied and used marker. Other glycoproteins, growth factors and immune markers seem to play an important role. However, the search for an ideal endometriosis marker is still underway. Further studies into the pathogenesis of endometriosis will help to identify biomarkers or sets of biomarkers with the potential to improve and speed up the diagnostic process in a non-invasive way.
Collapse
Affiliation(s)
- Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (M.N.); (M.R.); (B.L.-G.)
| | - Aleksandra Pilszyk
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (M.N.); (M.R.); (B.L.-G.)
| | - Magdalena Niebrzydowska
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (M.N.); (M.R.); (B.L.-G.)
| | - Zuzanna Pilszyk
- Scientific Association at the 2nd Clinic of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | - Monika Ruszała
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (M.N.); (M.R.); (B.L.-G.)
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.P.); (M.N.); (M.R.); (B.L.-G.)
| |
Collapse
|
12
|
Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M, Castro PF, García L, Gabrielli L, Corbalán R, Garrido-Olivares L, Lavandero S. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166170. [PMID: 34000374 DOI: 10.1016/j.bbadis.2021.166170] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.
Collapse
Affiliation(s)
- Mayarling Francisca Troncoso
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Bioanalysis & Immunology, Faculty of Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Corbalán
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Division of Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Shan L, Bai S, Zhao M. Early diagnosis of serum sICAM-1 and sRAGE in severe acute pancreatitis, and efficacy and prognosis prediction of glutamine combined with ulinastatin. Exp Ther Med 2021; 21:324. [PMID: 33732297 PMCID: PMC7903449 DOI: 10.3892/etm.2021.9755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease that can become severe, so that intensive care may be required. This study was to examine serum soluble intercellular adhesion molecule-1 (sICAM-1), and soluble receptor for advanced glycation end products (sRAGE) for efficacy and prognosis prediction of glutamine (Glu) combined with ulinastatin (UTI) on severe acute pancreatitis (SAP). Fifty-four mild acute pancreatitis (MAP) patients admitted to Yidu Central Hospital of Weifang were selected as the MAP group (MAPG), 80 with SAP were divided as the SAP group (SAPG), and 60 healthy individuals who came to Yidu Central Hospital of Weifang for physical examination during the same period were included to the normal group (NG). Serum sICAM-1 and sRAGE were measured and their predictive value of efficacy and prognosis were analyzed. In view of the treatment effectiveness and prognosis, the patients were divided into effective group (EG) and ineffective group (IG), good prognosis group (GPG) and poor prognosis group (PPG). The levels of D-lactate, diamine oxidase (DAO), endotoxin and T-lymphocyte subsets (CD3+, CD4+, CD8+ and CD4+/CD8+) were measured and the changes before and after treatment were analyzed. The AUC values of NG and MAPG, NG and SAPG, MAPG and SAPG were 0.857, 0.939 and 0.856, respectively, those of predicting efficacy were 0.920 and 0.874, respectively, and those of poor prognosis in the SAPG were 0.914 and 0.879, respectively. In the SAPG, D-lactate, DAO, endotoxin and CD8+ decreased markedly after treatment, but CD3+, CD4+, and CD4+/CD8+ were opposite. SICAM-1 and sRAGE were also independent risk factors for poor prognosis in the SAPG. Serum sICAM-1 and sRAGE have high predictive value for early diagnosis, efficacy and prognosis of Glu combined with UTI.
Collapse
Affiliation(s)
- Lini Shan
- Department of Pharmacy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Shixian Bai
- Intensive Care Unit, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Min Zhao
- Department of Pharmacy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| |
Collapse
|
14
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
15
|
Perricos A, Wenzl R, Husslein H, Eiwegger T, Gstoettner M, Weinhaeusel A, Beikircher G, Kuessel L. Does the Use of the "Proseek ® Multiplex Oncology I Panel" on Peritoneal Fluid Allow a Better Insight in the Pathophysiology of Endometriosis, and in Particular Deep-Infiltrating Endometriosis? J Clin Med 2020; 9:E2009. [PMID: 32604857 PMCID: PMC7355450 DOI: 10.3390/jcm9062009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis appears to share certain cancer-related processes, such as cell attachment, invasion, proliferation and neovascularization, some of which can also be found in other healthy tissues. In order to better understand the altered milieu of the peritoneal cavity, while acknowledging the reported similarities between endometriosis and neoplastic processes, we applied a multiplex oncology panel to search for specific biomarker signatures in the peritoneal fluid of women with endometriosis, women with deep-infiltrating endometriosis (DIE), as well as controls. In total, 84 patients were included in our study, 53 women with endometriosis and 31 controls. Ninety-two proteins were measured in prospectively collected peritoneal fluid (PF) samples, using the "Proseek® Multiplex Oncology I Panel". We first compared patients with endometriosis versus controls, and in a second step, DIE versus endometriosis patients without DIE. Out of the 92 analyzed proteins, few showed significant differences between the groups. In patients with endometriosis, ICOS ligand, Endothelial growth factor, E-selectin, Receptor tyrosine-protein kinase erbB-2, Interleukin-6 receptor alpha, Vascular endothelial growth factor receptor 2, Fms-related tyrosine kinase 3 ligand, C-X-C motif chemokine 10, Epididymal secretory protein E4 and Folate receptor-alpha were decreased, while Interleukin-6 and Interleukin-8 were increased compared to controls. Looking at patients with DIE, we found Chemokine ligand 19, Stem cell factor, Vascular endothelial growth factor D, Interleukin-6 receptor alpha and Melanoma inhibitory activity to be increased compared to endometriosis patients without DIE. We have shown a distinct regulation of the immune response, angiogenesis, cell proliferation, cell adhesion and inhibition of apoptosis in PF of patients with endometriosis compared to controls. The specific protein pattern in the PF of DIE patients provides new evidence that DIE represents a unique entity of extrauterine endometriosis with enhanced angiogenetic and pro-proliferative features.
Collapse
Affiliation(s)
- Alexandra Perricos
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (H.H.); (M.G.); (L.K.)
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (H.H.); (M.G.); (L.K.)
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (H.H.); (M.G.); (L.K.)
| | - Thomas Eiwegger
- Department of Pediatrics and Department of Immunology, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Manuela Gstoettner
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (H.H.); (M.G.); (L.K.)
| | - Andreas Weinhaeusel
- Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology Vienna, 1190 Vienna, Austria; (A.W.); (G.B.)
| | - Gabriel Beikircher
- Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology Vienna, 1190 Vienna, Austria; (A.W.); (G.B.)
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (H.H.); (M.G.); (L.K.)
| |
Collapse
|
16
|
Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020; 11:147. [PMID: 32210799 PMCID: PMC7069061 DOI: 10.3389/fphar.2020.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common benign disease in women of reproductive age. It has been defined as a disorder characterized by inflammation, compromised immunity, hormone dependence, and neuroangiogenesis. Unfortunately, the mechanisms of endometriosis have not yet been fully elucidated, and available treatment methods are currently limited. The discovery of new therapeutic drugs and improvements in existing treatment schemes remain the focus of research initiatives. Chinese medicine can improve the symptoms associated with endometriosis. Many Chinese herbal medicines could exert antiendometriosis effects via comprehensive interactions with multiple targets. However, these interactions have not been defined. This study used association rule mining and systems pharmacology to discover a method by which potential antiendometriosis herbs can be investigated. We analyzed various combinations and mechanisms of action of medicinal herbs to establish molecular networks showing interactions with multiple targets. The results showed that endometriosis treatment in Chinese medicine is mainly based on methods of supplementation with blood-activating herbs and strengthening qi. Furthermore, we used network pharmacology to analyze the main herbs that facilitate the decoding of multiscale mechanisms of the herbal compounds. We found that Chinese medicine could affect the development of endometriosis by regulating inflammation, immunity, angiogenesis, and other clusters of processes identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The antiendometriosis effect of Chinese medicine occurs mainly through nervous system–associated pathways, such as the serotonergic synapse, the neurotrophin signaling pathway, and dopaminergic synapse, among others, to reduce pain. Chinese medicine could also regulate VEGF signaling, toll-like reporter signaling, NF-κB signaling, MAPK signaling, PI3K-Akt signaling, and the HIF-1 signaling pathway, among others. Synergies often exist in herb pairs and herbal prescriptions. In conclusion, we identified some important targets, target pairs, and regulatory networks, using bioinformatics and data mining. The combination of data mining and network pharmacology may offer an efficient method for drug discovery and development from herbal medicines.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangyong Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heng Weng
- Department of Big Medical Data, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Hudson QJ, Perricos A, Wenzl R, Yotova I. Challenges in uncovering non-invasive biomarkers of endometriosis. Exp Biol Med (Maywood) 2020; 245:437-447. [PMID: 32019326 PMCID: PMC7082884 DOI: 10.1177/1535370220903270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endometriosis affects up to 10% of women of childbearing age, causing symptoms that can include chronic pelvic pain and reduced fertility. The symptoms are not specific to the disease and can be confused with other gynecological conditions or normal menstruation. Currently, the disease can be only definitively diagnosed by laparoscopy, as no clinically accepted biomarker exists. Biomarker discovery can either follow a hypothesis-driven approach selecting targets to be tested based on current knowledge of the disease, or take an unbiased high-throughput screening “omics” approach, such as transcriptomics or proteomics, to identify markers that are unique or elevated in accessible bodily fluids of patients with the disease. Numerous studies have been conducted using these approaches to try and identify endometriosis biomarkers, but variabilities in study design, cohort selection, and analysis, together with the fact that most studies were small-scale, have made independent validation of biomarker candidates difficult. Therefore, efforts are underway to standardize cohort selection, patient data, and sample collection to allow better cross-study comparisons. Large scale multi-center studies using this standardized approach are necessary to validate existing endometriosis biomarker candidates and uncover potential new markers. Given the complexity and heterogeneity of the disease, it is likely that a panel of biomarkers will be necessary to diagnose and categorize endometriosis.
Collapse
Affiliation(s)
- Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexandra Perricos
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna A-1090, Austria
| | - Rene Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna A-1090, Austria
| | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
18
|
Zhang J, Li H, Yi D, Lai C, Wang H, Zou W, Cao B. Knockdown of vascular cell adhesion molecule 1 impedes transforming growth factor beta 1-mediated proliferation, migration, and invasion of endometriotic cyst stromal cells. Reprod Biol Endocrinol 2019; 17:69. [PMID: 31443713 PMCID: PMC6708153 DOI: 10.1186/s12958-019-0512-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Endometriosis is one of the most common, difficult, and complicated gynecological disorders. Vascular cell adhesion molecule 1 (VCAM-1) has been reported to be aberrantly expressed in patients with endometriosis. However, the exact role and mechanism of VCAM-1 in endometriosis remains unclear. METHODS The expression of transforming growth factor beta 1 (TGF-β1) and VCAM-1 was determined by quantitative real-time polymerase chain reaction and western blotting. Human endometriotic cells were cultured and their responsiveness to TGF-β1 was evaluated by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and transwell migration and invasion assays. RESULTS The levels of TGF-β1 and VCAM-1 mRNA were upregulated in the endometriotic tissues. Knockdown of TGF-β1 in endometriotic cyst stromal cells caused a marked inhibition of cell proliferation, migration, and invasion. Treatment of endometriotic cyst stromal cells with TGF-β1 resulted in an obvious promotion of cell proliferation, migration, and invasion, and strikingly increased the protein expression of VCAM-1. Silencing of Smad3 abated TGF-β1-stimulated VCAM-1 expression. Furthermore, the promoting effects of TGF-β1 on the proliferation, migration, and invasion of endometriotic cyst stromal cells were blocked by silencing of VCAM-1. CONCLUSION Knockdown of VCAM-1 impedes TGF-β1-mediated proliferation, migration, and invasion of endometrial cells, thereby indicating that VCAM-1 may serve as a therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Juan Zhang
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| | - Hui Li
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China.
| | - Dan Yi
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| | - Chuntian Lai
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| | - Haiyan Wang
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| | - Wenda Zou
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| | - Bei Cao
- Reproductive Medicine Center, Zhuzhou Central Hospital, No. 166 South Changjiang Road, Zhuzhou, 411200, Hunan Province, China
| |
Collapse
|
19
|
Wang D, Luo Y, Wang G, Yang Q. Circular RNA expression profiles and bioinformatics analysis in ovarian endometriosis. Mol Genet Genomic Med 2019; 7:e00756. [PMID: 31144476 PMCID: PMC6637292 DOI: 10.1002/mgg3.756] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Circular RNAs (circRNAs) with miRNA response elements (MREs) could function as competing endogenous RNA (ceRNA) in regulating gene expression, thus playing vital roles in pathogenesis and progression of many diseases. However, the function of circRNAs in endometriosis remains unknown. This study was carried to profile the expression patterns of circRNAs in ovarian endometriosis. Methods High throughput RNA‐Seq was performed in six paired ectopic and eutopic endometrium tissues (ecEM vs. euEM), followed by quantitative real‐time polymerase chain reaction (qRT‐PCR) in 30 paired samples. Through bioinformatics prediction, we constructed a circRNA‐miRNA ‐mRNA network and elucidated circRNAs functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results A total of 146 upregulated and 148 downregulated circRNAs were identified, binding with 2,495 MREs. The qRT‐PCR validation results of four upregulated circRNAs matched the RNA‐Seq data. The ceRNA network included 48 miRNAs and 296 mRNAs. Functional analysis revealed several important pathways such as MAPK signaling pathway, and PI3K‐AKT signaling pathway, which might be associated with the pathogenesis and development of endometriosis. Conclusion Our data suggested that circRNAs are differentially expressed in endometriosis, which might be candidate factors for pathogenesis of this disease and be considered as promising therapeutic targets in the future.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajuan Luo
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Wang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Ding Y, Yang C, Zhou Z, Peng Y, Chen J, Pan S, Xu H, Cai Y, Ou K, Xie W, Wang H. Clinical significance of soluble adhesion molecules in anti-NMDAR encephalitis patients. Ann Clin Transl Neurol 2019; 6:945-953. [PMID: 31139692 PMCID: PMC6529932 DOI: 10.1002/acn3.740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence indicates that immune system dysfunction affects anti‐N‐methyl‐D‐aspartate receptor (NMDAR) encephalitis. This study aims to investigate the relationship between adhesion molecules and the pathophysiology in anti‐NMDAR encephalitis. Soluble forms of Intercellular adhesion molecule‐1 (sICAM‐1), vascular adhesion molecule‐1 (sVCAM‐1), and L‐selectin (sL‐selectin), were measured in the CSF and serum of 26 participants with anti‐NMDAR encephalitis, 11 patients with schizophrenia and 22 patients with noninflammatory disorders. CSF levels of sICAM‐1, sVCAM‐1 and sL‐selectin were significantly elevated in the anti‐NMDAR encephalitis group. sVCAM‐1 levels were positively associated with modified Rankin scale score in anti‐NMDAR encephalitis patients at the onset and 3‐month follow‐up.
Collapse
Affiliation(s)
- Yuewen Ding
- Department of Neurology Nanfang Hospital Southern Medical University Guangzhou China.,School of Traditional Chinese Medicine Southern Medical University Guangzhou China
| | - Chengjia Yang
- Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangdong Mental Health Center Guangzhou China.,The Second School of Clinical Medicine Southern Medical University Guangdong Province China
| | - Zheyi Zhou
- The Second School of Clinical Medicine Southern Medical University Guangdong Province China.,Department of Neurology Liuzhou Traditional Chinese Medical Hospital Liuzhou China
| | - Yu Peng
- Department of Neurology Nanfang Hospital Southern Medical University Guangzhou China
| | - Jinyu Chen
- Department of Neurology Nanfang Hospital Southern Medical University Guangzhou China
| | - Suyue Pan
- Department of Neurology Nanfang Hospital Southern Medical University Guangzhou China
| | - Hong Xu
- The Second School of Clinical Medicine Southern Medical University Guangdong Province China
| | - Yuping Cai
- Hexian Memorial Hospital Guangzhou China
| | - Kaiyun Ou
- Department of Neurology Laibin People's Hospital Laibin China
| | - Wei Xie
- School of Traditional Chinese Medicine Southern Medical University Guangzhou China.,Department of Traditional Chinese Medicine Nanfang Hospital Southern Medical University Guangzhou China
| | - Honghao Wang
- Department of Neurology Nanfang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
21
|
Irungu S, Mavrelos D, Worthington J, Blyuss O, Saridogan E, Timms JF. Discovery of non-invasive biomarkers for the diagnosis of endometriosis. Clin Proteomics 2019; 16:14. [PMID: 30992697 PMCID: PMC6451201 DOI: 10.1186/s12014-019-9235-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background Endometriosis is a common gynaecological disorder affecting 5-10% of women of reproductive age who often experience chronic pelvic pain and infertility. Definitive diagnosis is through laparoscopy, exposing patients to potentially serious complications, and is often delayed. Non-invasive biomarkers are urgently required to accelerate diagnosis and for triaging potential patients for surgery. Methods This retrospective case control biomarker discovery and validation study used quantitative 2D-difference gel electrophoresis and tandem mass tagging-liquid chromatography-tandem mass spectrometry for protein expression profiling of eutopic and ectopic endometrial tissue samples collected from 28 cases of endometriosis and 18 control patients undergoing surgery for investigation of chronic pelvic pain without endometriosis or prophylactic surgery. Samples were further sub-grouped by menstrual cycle phase. Selected differentially expressed candidate markers (LUM, CPM, TNC, TPM2 and PAEP) were verified by ELISA in a set of 87 serum samples collected from the same and additional women. Previously reported biomarkers (CA125, sICAM1, FST, VEGF, MCP1, MIF and IL1R2) were also validated and diagnostic performance of markers and combinations established. Results Cycle phase and endometriosis-associated proteomic changes were identified in eutopic tissue from over 1400 identified gene products, yielding potential biomarker candidates. Bioinformatics analysis revealed enrichment of adhesion/extracellular matrix proteins and progesterone signalling. The best single marker for discriminating endometriosis from controls remained CA125 (AUC = 0.63), with the best cross-validated multimarker models improving the AUC to 0.71-0.81, depending upon menstrual cycle phase and control group. Conclusions We have identified menstrual cycle- and endometriosis-associated protein changes linked to various cellular processes that are potential biomarkers and that provide insight into the biology of endometriosis. Our data indicate that the markers tested, whilst not useful alone, have improved diagnostic accuracy when used in combination and demonstrate menstrual cycle specificity. Tissue heterogeneity and blood contamination is likely to have hindered biomarker discovery, whilst a small sample size precludes accurate determination of performance by cycle phase. Independent validation of these biomarker panels in a larger cohort is however warranted, and if successful, they may have clinical utility in triaging patients for surgery.
Collapse
Affiliation(s)
- Stella Irungu
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Dimitrios Mavrelos
- Reproductive Medicine Unit, University College London Hospital, Elizabeth Garrett Anderson Wing, Lower Ground Floor, 235 Euston Road, London, NW1 2BU UK
| | - Jenny Worthington
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Oleg Blyuss
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Ertan Saridogan
- Reproductive Medicine Unit, University College London Hospital, Elizabeth Garrett Anderson Wing, Lower Ground Floor, 235 Euston Road, London, NW1 2BU UK
| | - John F Timms
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
22
|
Zang T, Cuttle L, Broszczak DA, Broadbent JA, Tanzer C, Parker TJ. Characterization of the Blister Fluid Proteome for Pediatric Burn Classification. J Proteome Res 2019; 18:69-85. [PMID: 30520305 DOI: 10.1021/acs.jproteome.8b00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Blister fluid (BF) is a novel and viable research matrix for burn injury study, which can reflect both systemic and local microenvironmental responses. The protein abundance in BF from different burn severities were initially observed using a 2D SDS-PAGE approach. Subsequently, a quantitative data independent acquisition (DIA) method, SWATH, was employed to characterize the proteome of pediatric burn blister fluid. More than 600 proteins were quantitatively profiled in 87 BF samples from different pediatric burn patients. These data were correlated with clinically assessed burn depth and time until complete wound re-epithelialization through several different statistical analyses. Several proteins from these analyses exhibited significant abundance change between different burn depth or re-epithelialization groups, and can be considered as potential biomarker candidates. Further gene ontology (GO) enrichment analysis of the significant proteins revealed the most significant burn related biological processes (BP) that are altered with burn depth, including homeostasis and oxygen transport. However, for wounds with re-epithelialization times more or less than 21 days, the significant GO annotations were related to enzyme activity. This quantitative proteomics investigation of burn BF may enable objective classification of burn wound severity and assist with clinical decision-making. Data are available via ProteomeXchange with identifier PXD011102.
Collapse
Affiliation(s)
- Tuo Zang
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia
| | - Leila Cuttle
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Daniel A Broszczak
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,School of Science, Faculty of Health Sciences , Australian Catholic University , Brisbane , Queensland 4014 , Australia
| | - James A Broadbent
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| | - Catherine Tanzer
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| |
Collapse
|
23
|
Menkhorst E, Griffiths M, Van Sinderen M, Rainczuk K, Niven K, Dimitriadis E. Galectin-7 is elevated in endometrioid (type I) endometrial cancer and promotes cell migration. Oncol Lett 2018; 16:4721-4728. [PMID: 30250540 DOI: 10.3892/ol.2018.9193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer (EC) is the most commonly diagnosed gynecological malignancy in Australian women. Notably, its incidence and mortality rate is increasing. Despite this, there are limited treatment options for EC. Galectin-7 regulates tumorigenesis in numerous epithelial cancer types, but the role of galectin-7 has not been investigated in EC. It was hypothesized that galectin-7 expression would be altered in EC and contribute to the development of EC. Galectin-7 levels in EC and benign endometrium were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA. The effect of recombinant galectin-7 (1 µg/ml) on cell adhesion, proliferation, apoptosis (xCELLigence and flow cytometry), migration (wound healing assay) and gene expression (RT-qPCR) was investigated using three human EC cell lines (Ishikawa, HEC1A and AN3CA). Galectin-7 gene and protein expression was significantly elevated in Grade 3 EC, compared with benign tissues. Galectin-7 was almost undetectable in Ishikawa and AN3CA cells, but highly expressed by HEC1A cells. Recombinant galectin-7 had no significant effect on cell proliferation or apoptosis in any cell line, but significantly reduced cell adhesion in Ishikawa (at 4 and 6 h) and AN3CA (at 2, 3, 4 and 6 h). Galectin-7 significantly promoted Ishikawa migration and significantly elevated collagen type IV α 1 chain and intercellular adhesion molecule 1 (ICAM1) gene expression during wound healing. The present study demonstrated that galectin-7 production increased in EC with increasing cancer grade; therefore, galectin-7 may promote the metastasis of EC by reducing cell-cell adhesion and enhancing cell migration.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Meaghan Griffiths
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Michelle Van Sinderen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Kate Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Keith Niven
- FlowCore, Technology Research Platforms, Monash University, Clayton, VIC 3800, Australia
| | - Evdokia Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
24
|
Rutherford EJ, Hill ADK, Hopkins AM. Adhesion in Physiological, Benign and Malignant Proliferative States of the Endometrium: Microenvironment and the Clinical Big Picture. Cells 2018; 7:E43. [PMID: 29772648 PMCID: PMC5981267 DOI: 10.3390/cells7050043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Although the developments in cellular and molecular biology over the last few decades have significantly advanced our understanding of the processes and players that regulate invasive disease, many areas of uncertainty remain. This review will discuss the contribution of dysregulated cell⁻cell and cell⁻matrix adhesion to the invasion in both benign and malignant contexts. Using the endometrium as an illustrative tissue that undergoes clinically significant invasion in both contexts, the adhesion considerations in the cells ("seed") and their microenvironment ("soil") will be discussed. We hope to orientate this discussion towards translational relevance for the diagnosis and treatment of endometrial conditions, which are currently associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Emily J Rutherford
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
25
|
Warren LA, Shih A, Renteira SM, Seckin T, Blau B, Simpfendorfer K, Lee A, Metz CN, Gregersen PK. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol Med 2018; 24:1. [PMID: 30134794 PMCID: PMC6016873 DOI: 10.1186/s10020-018-0009-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic and underdiagnosed disease which affects 5-10% of women of childbearing age and is characterized by growth of endometrial tissue outside of the uterus, most often in the peritoneal cavity. Delay in diagnosis is a major problem for management of this disorder, and treatment is often not initiated until the disease has progressed for many years. Although the exact etiology of endometriosis remains unknown, retrograde menstruation is recognized as a common underlying factor leading to the deposit of menstrual effluent (ME) into the peritoneal cavity. Differences in the cellular biology and genetics of the cells within ME are therefore likely to explain why endometriosis develops in only a subset of women. METHODS Patients with and without endometriosis were consented to provide ME. ME was analyzed by flow cytometry for CD45- and CD45+ cell populations or used to isolate stromal fibroblast cells. ME-derived stromal fibroblast cells were assessed using decidualization assays following the addition of cAMP and IGFBP-1 concentrations in the culture supernatants were measured by ELISA. In addition, RNA was collected and analyzed by RNA-Seq and qPCR for markers of decidualization and to identify differentially expressed genes in ME-derived stromal fibroblast cells obtained from controls and subjects with endometriosis (±cAMP). RESULTS Flow cytometry analysis of cell subsets within the CD45+ fraction of ME revealed a significant decrease in the number of uterine NK cells in endometriosis patients compared with controls (p < 0.01). No other significant differences within either the CD45+ or CD45- cell populations were observed. Most strikingly, ME-derived stromal fibroblast cells cultured from endometriosis subjects showed impaired decidualization potential compared with controls. Highly significant differences in decidualization response were detected by measuring IGFBP-1 production at multiple time points after cAMP stimulation (p = 0.0025 at 6 h; p = 0.0045 at 24 h; p = 0.0125 at 48 h). RNA-Seq and qPCR analyses were used to identify genes differentially expressed by ME-derived stromal fibroblast cells obtained from endometriosis and control subjects. CONCLUSIONS Menstrual effluent can be useful for investigating the pathobiology of endometriosis and for developing a non-invasive diagnostic for endometriosis which may lead to earlier and more effective treatments for this common disorder.
Collapse
Affiliation(s)
- Laura A Warren
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Andrew Shih
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Susana Marquez Renteira
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Tamer Seckin
- Seckin Endometriosis Center, 872 Fifth Avenue, New York, NY, 10065, USA
| | - Brandon Blau
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Kim Simpfendorfer
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Annette Lee
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Christine N Metz
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Peter K Gregersen
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|