1
|
Yu Z, Huang P, Wang L, Meng F, Shi Q, Huang X, Qiu L, Wang H, Kong S, Wu J. Monoamine oxidases activity maintains endometrial monoamine homeostasis and participates in embryo implantation and development. BMC Biol 2024; 22:166. [PMID: 39113019 PMCID: PMC11304925 DOI: 10.1186/s12915-024-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Monoamine oxidases (MAOs) is an enzyme that catalyzes the deamination of monoamines. The current research on this enzyme is focused on its role in neuropsychiatric, neurodevelopmental, and neurodegenerative diseases. Indeed, MAOs with two isoforms, namely, A and B, are located on the outer mitochondrial membrane and are widely distributed in the central nervous system and peripheral tissues. Several reports have described periodic changes in the levels of this enzyme in the human endometrial tissue. RESULTS The novel role of MAOs in endometrial receptivity establishment and embryonic development by maintaining monoamine homeostasis was investigated in this study. MAOs activity was observed to be enhanced during the first trimester in both humans and mice under normal conditions. However, under pathological conditions, MAOs activity was reduced and was linked to early pregnancy failure. During the secretory phase, the endometrial stromal cells differentiated into decidual cells with a stronger metabolism of monoamines by MAOs. Excessive monoamine levels cause monoamine imbalance in decidual cells, which results in the activation of the AKT signal, decreased FOXO1 expression, and decidual dysfunction. CONCLUSIONS The findings suggest that endometrial receptivity depends on the maintenance of monoamine homeostasis via MAOs activity and that this enzyme participates in embryo implantation and development.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Pinxiu Huang
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
| | - Lemeng Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Fanjing Meng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Qiyang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaolan Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lingling Qiu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
| | - Jinxiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Nikolaeva M, Arefieva A, Babayan A, Aksenov V, Zhukova A, Kalinina E, Krechetova L, Sukhikh G. Stress Biomarkers Transferred Into the Female Reproductive Tract by Seminal Plasma Are Associated with ICSI Outcomes. Reprod Sci 2024; 31:1732-1746. [PMID: 38393625 DOI: 10.1007/s43032-024-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to determine whether male stress is related to seminal stress biomarkers and pregnancy achievement in women exposed to their partner's seminal plasma (SP) in the intracytoplasmic sperm injection (ICSI) cycle. In this pilot prospective study, 20 couples undergoing ICSI, as well as 5 fertile sperm donors and 10 saliva donors, were investigated. Women were exposed to their partner's SP via unprotected sexual intercourse during the ICSI cycle and intravaginal application on the day of ovum pick-up (Day-OPU). Semen samples were collected from male partners by masturbation on the Day-OPU. Saliva and serum samples were collected prior to masturbation. Body fluids were frozen at - 80 °C until assayed. Biomarkers of activity of the sympathetic adrenomedullary axis (salivary alpha-amylase and adrenaline), sympathetic neural axis (noradrenaline and dopamine), hypothalamic-pituitary-adrenal (HPA) system (cortisol), and immune system (C-reactive protein and interleukin (IL)-18) were estimated to examine their association with SP composition and clinical pregnancy achievement. The clinical pregnancy rate was 45.0%. In the unsuccessful ICSI group, blunted levels of salivary and serum cortisol were found compared to the successful ICSI group and the fertile sperm donors. With regard to seminal markers, decreased cortisol level and elevated noradrenaline, noradrenaline/cortisol ratio, and lL-18 levels were strongly associated with ICSI failure (areas under the ROC curves were, 0.813, 0.848, 0.899, and 0.828, respectively). These findings confirm that stress response systems activity affects SP composition, which in turn is associated with ICSI outcomes in women exposed to their partner's SP during an ICSI cycle.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anastasia Zhukova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Liubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
- First Moscow State Medical University Named After I.M. Sechenov, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Bonnet A, Bluy L, Gress L, Canario L, Ravon L, Sécula A, Billon Y, Liaubet L. Sex and fetal genome influence gene expression in pig endometrium at the end of gestation. BMC Genomics 2024; 25:303. [PMID: 38515025 PMCID: PMC10958934 DOI: 10.1186/s12864-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.
Collapse
Affiliation(s)
- Agnes Bonnet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France.
| | - Lisa Bluy
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Ravon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Aurelie Sécula
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Yvon Billon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
4
|
Bravo K, González-Ortiz M, Beltrán-Castillo S, Cáceres D, Eugenín J. Development of the Placenta and Brain Are Affected by Selective Serotonin Reuptake Inhibitor Exposure During Critical Periods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:179-198. [PMID: 37466774 DOI: 10.1007/978-3-031-32554-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are usually prescribed to treat major depression and anxiety disorders. Fetal brain development exhibits dependency on serotonin (5-hydroxytryptamine, 5-HT) from maternal, placental, and fetal brain sources. At very early fetal stages, fetal serotonin is provided by maternal and placental sources. However, in later fetal stages, brain sources are indispensable for the appropriate development of neural circuitry and the rise of emergent functions implied in behavior acquisition. Thus, susceptible serotonin-related critical periods are recognized, involving the early maternal and placental 5-HT synthesis and the later endogenous 5-HT synthesis in the fetal brain. Acute and chronic exposure to SSRIs during these critical periods may result in short- and long-term placental and brain dysfunctions affecting intrauterine and postnatal life. Maternal and fetal cells express serotonin receptors which make them susceptible to changes in serotonin levels influenced by SSRIs. SSRIs block the serotonin transporter (SERT), which is required for 5-HT reuptake from the synaptic cleft into the presynaptic neuron. Chronic SSRI administration leads to pre- and postsynaptic 5-HT receptor rearrangement. In this review, we focus on the effects of SSRIs administered during critical periods upon placentation and brain development to be considered in evaluating the risk-safety balance in the clinical use of SSRIs.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile.
- Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Sebastian Beltrán-Castillo
- Centro integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| |
Collapse
|
5
|
Sun J, Sun J. How neuroactive factors mediates immune responses during pregnancy: An interdisciplinary view. Neuropeptides 2022; 91:102213. [PMID: 34839164 DOI: 10.1016/j.npep.2021.102213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Pregnancy, from insemination to parturition, is a highly complex but well-orchestrated process that requires various organs and systems to participate. Immune system and neuroendocrine system are important regulators in healthy pregnancy. Dozens of neuroactive factors have been detected in human placenta, whether they are locally secreted or circulated. Among them, some are vividly studied such as corticotropin-releasing hormone (CRH), human chorionic gonadotropin (hCG), transforming growth factor-β (TGF-β), progesterone and estrogens, while others are relatively lack of research. Though the neuroendocrine-immune interactions are demonstrated in some diseases for decades, the roles of neuroactive factors in immune system and lymphocytes during pregnancy are not fully elucidated. This review aims to provide an interdisciplinary view on how the neuroendocrine system mediate immune system during pregnancy process.
Collapse
Affiliation(s)
- Jiani Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Impact of Long-Rope Jumping on Monoamine and Attention in Young Adults. Brain Sci 2021; 11:brainsci11101347. [PMID: 34679411 PMCID: PMC8534060 DOI: 10.3390/brainsci11101347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Previous research has shown that rope jumping improves physical health; however, little is known about its impact on brain-derived monoamine neurotransmitters associated with cognitive regulation. To address these gaps in the literature, the present study compared outcomes between 15 healthy participants (mean age, 23.1 years) after a long-rope jumping exercise and a control condition. Long-rope jumping also requires co-operation between people, attention, spatial cognition, and rhythm sensation. Psychological questionnaires were administered to both conditions, and Stroop task performance and monoamine metabolite levels in the saliva and urine were evaluated. Participants performing the exercise exhibited lower anxiety levels than those in the control condition. Saliva analyses showed higher 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite) levels, and urine analyses revealed higher 3-methoxy-4-hydroxyphenylglycol and 5-hydroxyindoleacetic acid (a serotonin metabolite) levels in the exercise condition than in the control. Importantly, urinary 5-hydroxyindoleacetic acid level correlated with salivary and urinary 3-methoxy-4-hydroxyphenylglycol levels in the exercise condition. Furthermore, cognitive results revealed higher Stroop performance in the exercise condition than in the control condition; this performance correlated with salivary 3-methoxy-4-hydroxyphenylglycol levels. These results indicate an association between increased 3-methoxy-4-hydroxyphenylglycol and attention in long-rope jumping. We suggest that long-rope jumping predicts central norepinephrinergic activation and related attention maintenance.
Collapse
|
7
|
Wu JX, Lin S, Kong SB. Psychological Stress and Functional Endometrial Disorders: Update of Mechanism Insights. Front Endocrinol (Lausanne) 2021; 12:690255. [PMID: 34413829 PMCID: PMC8369421 DOI: 10.3389/fendo.2021.690255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
The human endometrium plays a vital role in providing the site for embryo implantation and maintaining the normal development and survival of the embryo. Recent studies have shown that stress is a common factor for the development of unexplained reproductive disorders. The nonreceptive endometrium and disturbed early maternal-fetal interaction might lead to infertility including the repeated embryo implantation failure and recurrent spontaneous abortion, or late pregnancy complications, thereby affecting the quality of life as well as the psychological status of the affected individuals. Additionally, psychological stress might also adversely affect female reproductive health. In recent years, several basic and clinical studies have tried to investigate the harm caused by psychological stress to reproductive health, however, the mechanism is still unclear. Here, we review the relationship between psychological stress and endometrial dysfunction, and its consequent effects on female infertility to provide new insights for clinical therapeutic interventions in the future.
Collapse
Affiliation(s)
- Jin-xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Shuang-bo Kong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Ranzil S, Ellery S, Walker DW, Vaillancourt C, Alfaidy N, Bonnin A, Borg A, Wallace EM, Ebeling PR, Erwich JJ, Murthi P. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019; 84:74-83. [PMID: 31176514 PMCID: PMC6724713 DOI: 10.1016/j.placenta.2019.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Placental insufficiency contributes to altered maternal-fetal amino acid transfer, and thereby to poor fetal growth. An important placental function is the uptake of tryptophan and its metabolism to serotonin (5-HT) and kynurenine metabolites, which are essential for fetal development. We hypothesised that placental 5-HT content will be increased in pregnancies affected with fetal growth restriction (FGR). METHODS The components of the 5-HT synthetic pathway were determined in chorionic villus samples (CVS) from small-for gestation (SGA) and matched control collected at 10-12 weeks of human pregnancy; and in placentae from third trimester FGR and gestation-matched control pregnancies using the Fluidigm Biomarker array for mRNA expression, the activity of the enzyme TPH and 5-HT concentrations using an ELISA. RESULTS Gene expression for the rate limiting enzymes, TPH1 and TPH2; 5-HT transporter, SLC6A4; and 5-HT receptors HTR5A, HTR5B, HTR1D and HTR1E were detected in all CVS and third trimester placentae. No significant difference in mRNA was observed in SGA compared with control. Although there was no significant change in TPH1 mRNA, the mRNA of TPH2 and SLC6A4 was significantly decreased in FGR placentae (p < 0.05), while 5-HT receptor mRNA was significantly increased in FGR compared with control (p < 0.01). Placental TPH enzyme activity was significantly increased with a concomitant increase in the total placental 5-HT concentrations in FGR compared with control. CONCLUSION This study reports differential expression and activity of the key components of the 5-HT synthetic pathway associated with the pathogenesis of FGR. Further studies are required to elucidate the functional consequences of increased placental 5-HT in FGR pregnancies.
Collapse
Affiliation(s)
- Suveena Ranzil
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - David W Walker
- Royal Melbourne Institute of Technology University - Bundoora Campus, Melbourne, Victoria, Australia
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Laval, QC, Canada; BioMed Research Centre, Laval, QC, Canada Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Universite du Quebec a Montreal, Montreal, QC, Canada
| | - Nadia Alfaidy
- Institut National de la Santé, et de la Recherche Médicale, Unité, 1036, Grenoble, France; Univ. Grenoble-Alpes, 38000, Grenoble, France; Commissariat à l'Energie Atomique (CEA), iRTSV- Biology of Cancer and infection, Grenoble, France
| | - Alexander Bonnin
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, USA
| | - Anthony Borg
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jan Jaap Erwich
- Department of Obstetrics and Gynecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Lee B, Koeppel AF, Wang ET, Gonzalez TL, Sun T, Kroener L, Lin Y, Joshi NV, Ghadiali T, Turner SD, Rich SS, Farber CR, Rotter JI, Ida Chen YD, Goodarzi MO, Guller S, Harwood B, Serna TB, Williams J, Pisarska MD. Differential gene expression during placentation in pregnancies conceived with different fertility treatments compared with spontaneous pregnancies. Fertil Steril 2019; 111:535-546. [PMID: 30611556 DOI: 10.1016/j.fertnstert.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify differences in the transcriptomic profiles during placentation from pregnancies conceived spontaneously vs. those with infertility using non-in vitro fertilization (IVF) fertility treatment (NIFT) or IVF. DESIGN Cohort study. SETTING Academic medical center. PATIENT(S) Women undergoing chorionic villus sampling at gestational age 11-13 weeks (n = 141), with pregnancies that were conceived spontaneously (n = 74), with NIFT (n = 33), or with IVF (n = 34), resulting in the delivery of viable offspring. INTERVENTION(S) Collection of chorionic villus samples from women who conceived spontaneously, with NIFT, or with IVF for gene expression analysis using RNA sequencing. MAIN OUTCOME MEASURE(S) Baseline maternal, paternal, and fetal demographics, maternal medical conditions, pregnancy complications, and outcomes. Differential gene expression of first-trimester placenta. RESULT(S) There were few differences in the transcriptome of first-trimester placenta from NIFT, IVF, and spontaneous pregnancies. There was one protein-coding differentially expressed gene (DEG) between the spontaneous and infertility groups, CACNA1I, one protein-coding DEG between the spontaneous and IVF groups, CACNA1I, and five protein-coding DEGs between the NIFT and IVF groups, SLC18A2, CCL21, FXYD2, PAEP, and DNER. CONCLUSION(S) This is the first and largest study looking at transcriptomic profiles of first-trimester placenta demonstrating similar transcriptomic profiles in pregnancies conceived using NIFT or IVF and spontaneous conceptions. Gene expression differences found to be highest in the NIFT group suggest that the underlying infertility, in addition to treatment-related factors, may contribute to the observed gene expression profiles.
Collapse
Affiliation(s)
- Bora Lee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex F Koeppel
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tianyanxin Sun
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsay Kroener
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Yayu Lin
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nikhil V Joshi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tejal Ghadiali
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen D Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | | | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Seth Guller
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Bryna Harwood
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania B Serna
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - John Williams
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
10
|
Laurent L, Deroy K, St-Pierre J, Côté F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie 2017; 140:159-165. [DOI: 10.1016/j.biochi.2017.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
|
11
|
Lin HJ, Lu HH, Liu KM, Chau CM, Hsieh YZ, Li YK, Liau I. Toward live-cell imaging of dopamine neurotransmission with fluorescent neurotransmitter analogues. Chem Commun (Camb) 2016; 51:14080-3. [PMID: 26251847 DOI: 10.1039/c5cc03050a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel 'fluorescent dopamine' that possesses essential features of natural dopamine. Our method is simple and is readily extended to monoamine neurotransmitters such as L-norepinephrine, serotonin and GABA, providing a more practical approach. Because of its compatibility with sensitive fluorescent measurements, we envisage that our approach will have a broad range of applications in neural research.
Collapse
Affiliation(s)
- Hui-Jen Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kaya HS, Hantak AM, Stubbs LJ, Taylor RN, Bagchi IC, Bagchi MK. Roles of progesterone receptor A and B isoforms during human endometrial decidualization. Mol Endocrinol 2015; 29:882-95. [PMID: 25875046 DOI: 10.1210/me.2014-1363] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Progesterone, acting through the progesterone receptors (PGRs), is one of the most critical regulators of endometrial differentiation, known as decidualization, which is a key step toward the establishment of pregnancy. Yet a long-standing unresolved issue in uterine biology is the precise roles played by the major PGR isoforms, PGR-A and PGR-B, during decidualization in the human. Our approach, expressing PGR-A and PGR-B individually after silencing endogenous PGRs in human endometrial stromal cells (HESCs), enabled the analysis of the roles of these isoforms separately as well as jointly. Chromatin immunoprecipitation-sequencing in combination with gene expression profiling revealed that PGR-B controls a substantially larger cistrome and transcriptome than PGR-A during HESC differentiation. Interestingly, PGR-B directly regulates the expression of PGR-A. De novo motif analysis indicated that, although the 2 isoforms bind to the same DNA sequence motif, there are both common and unique neighboring motifs where other transcription factors, such as FOSL1/2, JUN, C/EBPβ, and STAT3, bind and dictate the transcriptional activities of these isoforms. We found that PGR-A and PGR-B regulate overlapping as well as distinct sets of genes, many of which are known to be critical for decidualization and establishment of pregnancy. When PGR-A and PGR-B were coexpressed during HESC differentiation, PGR-B played a predominant role, although both isoforms influenced each other's transcriptional activity. This study revealed the gene networks that operate downstream of each PGR isoform to mediate critical functions, such as regulation of the cell cycle, angiogenesis, lysosomal activation, insulin receptor signaling, and apoptosis, during decidualization in the human.
Collapse
Affiliation(s)
- Hatice S Kaya
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Alison M Hantak
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Lisa J Stubbs
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert N Taylor
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Indrani C Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K., A.M.H., M.K.B.), Cell and Developmental Biology (L.J.S.), and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
13
|
Berveiller P, Degrelle S, Segond N, Cohen H, Evain-Brion D, Gil S. Drug transporter expression during in vitro differentiation of first-trimester and term human villous trophoblasts. Placenta 2015; 36:93-6. [DOI: 10.1016/j.placenta.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
|
14
|
Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 2013; 170:4-16. [PMID: 23347064 PMCID: PMC3764843 DOI: 10.1111/bph.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
15
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|