1
|
Huang J, Feng Y, Shi Y, Shao W, Li G, Chen G, Li Y, Yang Z, Yao Z. Telomeres and telomerase in Sarcoma disease and therapy. Int J Med Sci 2024; 21:2065-2080. [PMID: 39239547 PMCID: PMC11373546 DOI: 10.7150/ijms.97485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Sarcoma is a rare tumor derived from the mesenchymal tissue and mainly found in children and adolescents. The outcome for patients with sarcoma is relatively poor compared with that for many other solid malignant tumors. Sarcomas have a highly heterogeneous pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequently observed in sarcomas. The telomere maintenance mechanism (TMM) has recently been considered as a prognostic factor for patients with sarcomas, and alternative lengthening of telomeres (ALT) positivity has been correlated with poor outcomes in patients with several types of sarcomas. Therefore, telomeres and telomerases may be useful targets for treating sarcomas. This review aims to provide an overview of telomere and telomerase biology in sarcomas.
Collapse
Affiliation(s)
- Jin Huang
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - YangJing Shi
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Weilin Shao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Genshan Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Gangxian Chen
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Ying Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| |
Collapse
|
2
|
Yang Q, Zhang J, Fan Z. Causal association between telomere length and female reproductive endocrine diseases: a univariable and multivariable Mendelian randomization analysis. J Ovarian Res 2024; 17:146. [PMID: 39010148 PMCID: PMC11247788 DOI: 10.1186/s13048-024-01466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The relationship between leukocyte telomere length (LTL) and female reproductive endocrine diseases has gained significant attention and research interest in recent years. However, there is still limited understanding of the exact impacts of LTL on these diseases. Therefore, the primary objective of this study was to investigate the genetic causal association between LTL and female reproductive endocrine diseases by employing Mendelian randomization (MR) analysis. METHODS Instruments for assessing genetic variation associated with exposure and outcome were derived from summary data of published genome-wide association studies (GWAS). Inverse-variance weighted (IVW) was utilized as the main analysis method to investigate the causal relationship between LTL and female reproductive endocrine diseases. The exposure data were obtained from the UK Biobanks GWAS dataset, comprising 472,174 participants of European ancestry. The outcome data were acquired from the FinnGen consortium, including abnormal uterine bleeding (menorrhagia and oligomenorrhea), endometriosis (ovarian endometrioma and adenomyosis), infertility, polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI) and premenstrual syndrome (PMS). Furthermore, to account for potential confounding factors such as smoking, alcohol consumption, insomnia, body mass index (BMI) and a history of pelvic inflammatory disease (PID), multivariable MR (MVMR) analysis was also conducted. Lastly, a series of pleiotropy tests and sensitivity analyses were performed to ensure the reliability and robustness of our findings. P < 0.0063 was considered to indicate statistically significant causality following Bonferroni correction. RESULTS Our univariable MR analysis demonstrated that longer LTL was causally associated with an increased risk of menorrhagia (IVW: odds ratio [OR]: 1.1803; 95% confidence interval [CI]: 1.0880-1.2804; P = 0.0001) and ovarian endometrioma (IVW: OR: 1.2946; 95%CI: 1.0970-1.5278; P = 0.0022) at the Bonferroni significance level. However, no significant correlation was observed between LTL and oligomenorrhea (IVW: OR: 1.0124; 95%CI: 0.7350-1.3946; P = 0.9398), adenomyosis (IVW: OR: 1.1978; 95%CI: 0.9983-1.4372; P = 0.0522), infertility (IVW: OR: 1.0735; 95%CI: 0.9671-1.1915; P = 0.1828), PCOS (IVW: OR: 1.0633; 95%CI: 0.7919-1.4278; P = 0.6829), POI (IVW: OR: 0.8971; 95%CI: 0.5644-1.4257; P = 0.6459) or PMS (IVW: OR: 0.7749; 95%CI: 0.4137-1.4513; P = 0.4256). Reverse MR analysis indicated that female reproductive endocrine diseases have no causal effect on LTL. MVMR analysis suggested that the causal effect of LTL on menorrhagia and ovarian endometrioma remained significant after accounting for smoking, alcohol consumption, insomnia, BMI and a history of PID. Pleiotropic and sensitivity analyses also showed robustness of our results. CONCLUSION The results of our bidirectional two-sample MR analysis revealed that genetically predicted longer LTL significantly increased the risk of menorrhagia and ovarian endometrioma, which is consistent with the findings from MVMR studies. However, we did not notice any significant effects of LTL on oligomenorrhea, adenomyosis, infertility, PCOS, POI or PMS. Additionally, reproductive endocrine disorders were found to have no impact on LTL. To enhance our understanding of the effect and underlying mechanism of LTL on female reproductive endocrine diseases, further large-scale studies are warranted in the future.
Collapse
Affiliation(s)
- QiaoRui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JinFu Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - ZhenLiang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
3
|
Pańczyszyn A, Boniewska-Bernacka E, Włodarczyk K, Wertel I, Goc A. Telomeres and telomerase in endometrial cancer and hyperplasia. Arch Med Sci 2024; 20:682-685. [PMID: 38757009 PMCID: PMC11094811 DOI: 10.5114/aoms/186189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The study aimed to measure telomeres length (TL) and telomerase expression in normal endometrium and endometrial hyperplasia and cancer. Methods Total RNA and DNA were isolated from endometrium samples of 117 patients. The RT-PCR method was used to determine telomerase expression and relative telomere length. Results The control group had the longest telomeres in comparison to the hyperplasia and endometrial cancer groups. Only in the endometrial cancer group was telomerase expressed and positively correlated with telomere length. Conclusions Telomere extension in endometrial cancer is mediated by telomerase, but telomere length may not be an indicator of endometrioid cancer development.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Opole, Poland
| | - Ewa Boniewska-Bernacka
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Opole, Poland
| | - Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Lublin, Poland
| | - Anna Goc
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Opole, Poland
| |
Collapse
|
4
|
Song Y, Burns GW, Joshi NR, Arora R, Kim JJ, Fazleabas AT. Spheroids as a model for endometriotic lesions. JCI Insight 2023; 8:e160815. [PMID: 37104033 PMCID: PMC10393231 DOI: 10.1172/jci.insight.160815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - J. Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
5
|
Zhang H, Kong W, Xie Y, Zhao X, Luo D, Chen S, Pan Z. Telomere-related genes as potential biomarkers to predict endometriosis and immune response: Development of a machine learning-based risk model. Front Med (Lausanne) 2023; 10:1132676. [PMID: 36968845 PMCID: PMC10034389 DOI: 10.3389/fmed.2023.1132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionEndometriosis (EM) is an aggressive, pleomorphic, and common gynecological disease. Its clinical presentation includes abnormal menstruation, dysmenorrhea, and infertility, which seriously affect the patient's quality of life. However, the pathogenesis underlying EM and associated regulatory genes are unknown.MethodsTelomere-related genes (TRGs) were uploaded from TelNet. RNA-sequencing (RNA-seq) data of EM patients were obtained from three datasets (GSE5108, GSE23339, and GSE25628) in the GEO database, and a random forest approach was used to identify telomere signature genes and build nomogram prediction models. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the pathways involved in the action of the signature genes. Finally, the CAMP database was used to screen drugs for potential use in EM treatment.ResultsFifteen total genes were screened as EM–telomere differentially expressed genes. Further screening by machine learning obtained six genes as characteristic predictive of EM. Immuno-infiltration analysis of the telomeric genes showed that expressions including macrophages and natural killer cells were significantly higher in cluster A. Further enrichment analysis showed that the differential genes were mainly enriched in biological pathways like cell cycle and extracellular matrix. Finally, the Connective Map database was used to screen 11 potential drugs for EM treatment.DiscussionTRGs play a crucial role in EM development, and are associated with immune infiltration and act on multiple pathways, including the cell cycle. Telomere signature genes can be valuable predictive markers for EM.
Collapse
|
6
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
7
|
Malvezzi H, Dobo C, Filippi RZ, Mendes do Nascimento H, Palmieri da Silva e Sousa L, Meola J, Piccinato CA, Podgaec S. Altered p16 Ink4a, IL-1β, and Lamin b1 Protein Expression Suggest Cellular Senescence in Deep Endometriotic Lesions. Int J Mol Sci 2022; 23:2476. [PMID: 35269619 PMCID: PMC8910415 DOI: 10.3390/ijms23052476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Endometriosis causes immunological and cellular alterations. Endometriosis lesions have lower levels of lamin b1 than the endometrium. Moreover, high levels of pro-inflammatory markers are observed in the peritoneal fluid, follicular fluid, and serum in endometriosis lesions. Thus, we hypothesized that the accumulation of senescent cells in endometriosis tissues would facilitate endometriosis maintenance in an inflammatory microenvironment. To study senescent cell markers and the senescence-associated secretory phenotype (SASP) in endometriosis lesions, we conducted a cross-sectional study with 27 patients undergoing video laparoscopy for endometriosis resection and 19 patients without endometriosis. Endometriosis lesions were collected from patients with endometriosis, while eutopic endometrium was collected from patients both with and without endometriosis. Tissues were evaluated for senescence markers (p16Ink4a, lamin b1, and IL-1β) and interleukin concentrations. The expression of p16Ink4a increased in lesions compared to that in eutopic endometrium from endometriosis patients in the secretory phase. In the proliferative phase, lesions exhibited lower lamin b1 expression but higher IL-4 expression than the eutopic endometrium. Further, IL-1β levels were higher in the lesions than in the eutopic endometrium in both the secretory and proliferative phases. We believe that our findings may provide targets for better therapeutic interventions to alleviate the symptoms of endometriosis.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Cristine Dobo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Renee Zon Filippi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Helen Mendes do Nascimento
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Laura Palmieri da Silva e Sousa
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Juliana Meola
- School of Medicine of Ribeirão Preto, University of São Paulo, Gynecology and Obstetrics, Av. Bandeirantes, 3900, Vila Monte Alegre 14049-900, SP, Brazil;
| | - Carla Azevedo Piccinato
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| |
Collapse
|
8
|
Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival. Int J Mol Sci 2022; 23:ijms23020626. [PMID: 35054812 PMCID: PMC8775816 DOI: 10.3390/ijms23020626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. "Immortality" of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies.
Collapse
|
9
|
Zhou Y, Jin Y, Wang Y, Wu R. Hypoxia activates the unfolded protein response signaling network: An adaptive mechanism for endometriosis. Front Endocrinol (Lausanne) 2022; 13:945578. [PMID: 36339404 PMCID: PMC9630844 DOI: 10.3389/fendo.2022.945578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Endometriosis (EMS) is a chronic gynecological disease that affects women of childbearing age. However, the exact cause remains unclear. The uterus is a highly vascularized organ that continuously exposes endometrial cells to high oxygen concentrations. According to the "planting theory" of EMS pathogenesis, when endometrial cells fall from the uterine cavity and retrograde to the peritoneal cavity, they will face severe hypoxic stress. Hypoxic stress remains a key issue even if successfully implanted into the ovaries or peritoneum. In recent years, increasing evidence has confirmed that hypoxia is closely related to the occurrence and development of EMS. Hypoxia-inducible factor-1α (HIF-1α) can play an essential role in the pathological process of EMS by regulating carbohydrate metabolism, angiogenesis, and energy conversion of ectopic endometrial cells. However, HIF-1α alone is insufficient to achieve the complete program of adaptive changes required for cell survival under hypoxic stress, while the unfolded protein response (UPR) responding to endoplasmic reticulum stress plays an essential supplementary role in promoting cell survival. The formation of a complex signal regulation network by hypoxia-driven UPR may be the cytoprotective adaptation mechanism of ectopic endometrial cells in unfavorable microenvironments.
Collapse
|
10
|
Aimagambetova G, Terzic S, Laganà AS, Bapayeva G, la Fleur P, Terzic M. Contemporary Fertility-Sparing Management Options of Early Stage Endometrioid Endometrial Cancer in Young Nulliparous Patients. J Clin Med 2021; 11:196. [PMID: 35011935 PMCID: PMC8746136 DOI: 10.3390/jcm11010196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022] Open
Abstract
Incidence of endometrial cancer (EC) has been increasing in recent years, especially in high-income countries. The disease commonly affects peri- and postmenopausal women; however, about 5% of women are diagnosed with EC in their reproductive age. Due to both the increasing incidence of EC among reproductive age women and trends to delayed childbearing, fertility-sparing treatment for young patients with EC has become extremely important for researchers and practitioners. Because the classic treatment with total hysterectomy and bilateral saplingo-oophorectomy is not an appropriate approach for young women demanding fertility preservation, several fertility-sparing options have been developed and summarized in this review. Utilization of different medications and their combination (progestagens, gonadotropin releasing hormones analogues, and metformin in different formulations) are tested and found as efficient for fertility-sparing treatment. New minimally invasive surgical techniques, combined with progestagens, are also confirmed as valuable. There are many novel conservative and surgical treatment approaches under investigation. Assuming that molecular biomarkers can be both diagnostic and prognostic to assist in prediction of response to a certain therapy, prognostic risk groups' stratification along with specific biomarkers' identification will ensure low recurrence and decrease mortality rates in young women with EC.
Collapse
Affiliation(s)
- Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sanja Terzic
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.T.); (P.l.F.); (M.T.)
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| | - Gauri Bapayeva
- National Research Center of Mother and Child Health, Clinical Academic Department of Women’s Health, University Medical Center, Nur-Sultan 010000, Kazakhstan;
| | - Philip la Fleur
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.T.); (P.l.F.); (M.T.)
| | - Milan Terzic
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.T.); (P.l.F.); (M.T.)
- National Research Center of Mother and Child Health, Clinical Academic Department of Women’s Health, University Medical Center, Nur-Sultan 010000, Kazakhstan;
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Giri N, Alter BP, Savage SA, Stratton P. Gynaecological and reproductive health of women with telomere biology disorders. Br J Haematol 2021; 193:1238-1246. [PMID: 34019708 DOI: 10.1111/bjh.17545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Reproductive health may be adversely impacted in women with dyskeratosis congenita (DC) and related telomere biology disorders (TBD). We evaluated gynaecological problems, fertility, and pregnancy outcomes in 39 females aged 10-81 years who were followed longitudinally in our DC/TBD cohort. Twenty-six had bone marrow failure and 12 underwent haematopoietic cell transplantation. All attained menarche at a normal age. Thirteen women reported menorrhagia; ten used hormonal contraception to reduce bleeding. Nine experienced natural normal-aged menopause. Gynaecological problems (endometriosis = 3, pelvic varicosities = 1, cervical intraepithelial neoplasia = 1, and uterine prolapse = 2) resulted in surgical menopause in seven. Twenty-five of 26 women attempting fertility carried 80 pregnancies with 49 (61%) resulting in livebirths. Ten (38%) women experienced 28 (35%) miscarriages, notably recurrent pregnancy loss in five (19%). Preeclampsia (n = 6, 24%) and progressive cytopenias (n = 10, 40%) resulted in maternal-fetal compromise, including preterm (n = 5) and caesarean deliveries (n = 18, 37%). Gynaecological/reproductive problems were noted mainly in women with autosomal-dominant inheritance; others were still young or died early. Although women with TBDs had normal menarche, fertility, and menopause, gynaecological problems and pregnancy complications leading to caesarean section, preterm delivery, or transfusion support were frequent. Women with TBDs will benefit from multidisciplinary, coordinated care by haematology, gynaecology and maternal-fetal medicine.
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pamela Stratton
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Parvanov D, Ganeva R, Vidolova N, Stamenov G. Decreased number of p16-positive senescent cells in human endometrium as a marker of miscarriage. J Assist Reprod Genet 2021; 38:2087-2095. [PMID: 33821427 DOI: 10.1007/s10815-021-02182-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate whether the number of p16-positive cells in the functional layer of the endometrium could be a useful biomarker to identify women with recurrent implantation failure (RIF) undergoing in vitro fertilization (IVF) at risk of miscarriage. METHODS Immunohistochemical staining was performed in 311 endometrial biopsies taken during mid-luteal phase using antibody against p16INK4A. The percentage of p16-positive cells was determined in luminal, glandular and stromal endometrial cells. After embryo transfer, women were divided into the following groups: unsuccessful embryo implantation (n = 151), miscarriage (n = 66) and live birth (n = 94). The percentage of p16-positive cells in all endometrial compartments was compared among these groups. RESULTS We found that the percentages of p16-positive glandular and luminal epithelial endometrial cells were significantly higher in patients with live births compared to women with miscarriage (9.3% vs. 2.9%, P < 0.001; and 35.2% vs. 11.7%, P = 0.001, respectively). This tendency was not confirmed in thе stroma. The cut-off values with p16-positive luminal cells lower than 12.5% and p16-positive glandular cells lower than 3.2% could be predictive factors for miscarriage (AUC 0.80 and 0.79; sensitivity 71.3% and 74.5%; specificity 74.2% and 71.2%, respectively). CONCLUSION A decreased number of senescent p16-positive cells could be involved in the implantation failures and aetiology of recurrent miscarriage. Women with history of RIF with reduced populations of p16-positive cells in the endometrial glandular and luminal epithelium may be at greater risk for unsuccessful implantation and miscarriage. The percentage of p16-positive luminal epithelial cells may be clinically useful as a biomarker of miscarriage.
Collapse
Affiliation(s)
- Dimitar Parvanov
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria.
| | - Rumiana Ganeva
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| | - Nina Vidolova
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| | - Georgi Stamenov
- Nadezhda Women's Health Hospital, 3 "Blaga vest" Street, Sofia, Bulgaria
| |
Collapse
|
13
|
Endometriosis Is Associated with a Significant Increase in hTERC and Altered Telomere/Telomerase Associated Genes in the Eutopic Endometrium, an Ex-Vivo and In Silico Study. Biomedicines 2020; 8:biomedicines8120588. [PMID: 33317189 PMCID: PMC7764055 DOI: 10.3390/biomedicines8120588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres protect chromosomal ends and they are maintained by the specialised enzyme, telomerase. Endometriosis is a common gynaecological disease and high telomerase activity and higher hTERT levels associated with longer endometrial telomere lengths are characteristics of eutopic secretory endometrial aberrations of women with endometriosis. Our ex-vivo study examined the levels of hTERC and DKC1 RNA and dyskerin protein levels in the endometrium from healthy women and those with endometriosis (n = 117). The in silico study examined endometriosis-specific telomere- and telomerase-associated gene (TTAG) transcriptional aberrations of secretory phase eutopic endometrium utilising publicly available microarray datasets. Eutopic secretory endometrial hTERC levels were significantly increased in women with endometriosis compared to healthy endometrium, yet dyskerin mRNA and protein levels were unperturbed. Our in silico study identified 10 TTAGs (CDKN2A, PML, ZNHIT2, UBE3A, MCCC2, HSPC159, FGFR2, PIK3C2A, RALGAPA1, and HNRNPA2B1) to be altered in mid-secretory endometrium of women with endometriosis. High levels of hTERC and the identified other TTAGs might be part of the established alteration in the eutopic endometrial telomerase biology in women with endometriosis in the secretory phase of the endometrium and our data informs future research to unravel the fundamental involvement of telomerase in the pathogenesis of endometriosis.
Collapse
|
14
|
Adishesh M, Alnafakh R, Baird DM, Jones RE, Simon S, Button L, Kamal AM, Kirwan J, DeCruze SB, Drury J, Saretzki G, Hapangama DK. Human Endometrial Carcinogenesis Is Associated with Significant Reduction in Long Non-Coding RNA, TERRA. Int J Mol Sci 2020; 21:E8686. [PMID: 33217925 PMCID: PMC7698627 DOI: 10.3390/ijms21228686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Telomeres are transcribed as long non-coding RNAs called TERRAs (Telomeric repeat containing RNA) that participate in a variety of cellular regulatory functions. High telomerase activity (TA) is associated with endometrial cancer (EC). This study aimed to examine the levels of three TERRAs, transcribed at chromosomes 1q-2q-4q-10q-13q-22q, 16p and 20q in healthy (n = 23) and pathological (n = 24) human endometrium and to examine their association with cellular proliferation, TA and telomere lengths. EC samples demonstrated significantly reduced levels of TERRAs for Chromosome 16p (Ch-16p) (p < 0.002) and Chromosome 20q (Ch-20q) (p = 0.0006), when compared with the postmenopausal samples. No significant correlation was found between TERRA levels and TA but both Ch-16p and Ch-20q TERRA levels negatively correlated with the proliferative marker Ki67 (r = -0.35, p = 0.03 and r = -0.42, p = 0.01 respectively). Evaluation of single telomere length analysis (STELA) at XpYp telomeres demonstrated a significant shortening in EC samples when compared with healthy tissues (p = 0.002). We detected TERRAs in healthy human endometrium and observed altered individual TERRA-specific levels in malignant endometrium. The negative correlation of TERRAs with cellular proliferation along with their significant reduction in EC may suggest a role for TERRAs in carcinogenesis and thus future research should explore TERRAs as potential therapeutic targets in EC.
Collapse
Affiliation(s)
- Meera Adishesh
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Rafah Alnafakh
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Duncan M. Baird
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK; (D.M.B.); (R.E.J.)
| | - Rhiannon E. Jones
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK; (D.M.B.); (R.E.J.)
| | - Shannon Simon
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Lucy Button
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Areege M. Kamal
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
- The National Centre for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - John Kirwan
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
| | - S. Bridget DeCruze
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
| | - Josephine Drury
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| | - Gabriele Saretzki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Dharani K. Hapangama
- Liverpool Women’s Hospital NHS Foundation Trust, Liverpool L8 7SS, UK; (M.A.); (J.K.); (S.B.D.)
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool L8 7SS, UK; (R.A.); (S.S.); (L.B.); (A.M.K.); (J.D.)
| |
Collapse
|
15
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|
16
|
He J, Feng C, Zhu H, Wu S, Jin P, Xu T. Grainyhead-like 2 as a double-edged sword in development and cancer. Am J Transl Res 2020; 12:310-331. [PMID: 32194886 PMCID: PMC7061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Grainyhead-like 2 (GRHL2), one of the three homologs of Drosophila grainyhead, contributes to epithelial morphogenesis and differentiation. Dysregulation of GRHL2 has been shown to be involved in hearing loss and neural tube defects during embryogenesis. Moreover, it is well-recognized that GRHL2 suppresses epithelial-to-mesenchymal transition (EMT) that is required for migration and invasion of carcinoma, implicating, GRHL2 in carcinogenesis. Diverse mechanisms, as well as the varied roles of GRHL2 in different tumor tissues, have been elucidated. However, the functions of GRHL2 appear to be more complicated than initially thought. GRHL2, acting as either a tumor enhancer or a tumor inhibitor, depends on the type of cancer. In this review, we summarize research progress about normal physiological functions of GRHL2 including epithelial morphogenesis, neural tube closure, and hearing loss. Moreover, the mechanisms of GRHL2 in tumorigenesis, containing EMT suppression, forming a negative feedback loop with ZEB1 and miR200 family, interactions with estrogen receptor (ER)-dependent signaling pathway, regulation of telomerase reverse transcriptase and relationships with TGF-beta signaling pathway are discussed in this review in an effort to better understand the roles of GRHL2 in a variety of cancers toward the goal of GRHL2-targeted treatment in the near future.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Chunyang Feng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Shuying Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
17
|
Lin X, Dai Y, Tong X, Xu W, Huang Q, Jin X, Li C, Zhou F, Zhou H, Lin X, Huang D, Zhang S. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol 2020; 30:101431. [PMID: 31972508 PMCID: PMC6974790 DOI: 10.1016/j.redox.2020.101431] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Endometriosis an important cause of female infertility and seriously impact physical and psychological health of patients. Endometriosis is now considered to be a public health problem that deserves in-depth investigation, especially the etiopathogenesis of endometriosis-associated infertility. We aimed to illuminate the etiopathogenesis of endometriosis-associated infertility that involve excessive oxidative stress (OS) induced pathological changes of ovary cumulus granulosa cell (GCs). Senescence-associated β-galactosidase (SA β-gal) activity in GCs from endometriosis patients, soluble isoform of advanced glycation end products receptor (sRAGE) expression in follicular fluid from endometriosis patients and differentially expressed senescence-associated secretory phenotype factors (IL-1β, MMP-9, KGF and FGF basic protein) are all useful indexes to evaluate oocyte retrieval number and mature oocyte number. RNA-sequencing and bioinformatics analysis indicated senescent phenotype of endometriosis GCs and aggravated endoplasmic reticulum (ER) stress in endometriosis GCs. Targeting ER stress significantly alleviated OS-induced GCs senescence as well as mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) reduction in GCs. Moreover, melatonin administration rescued OS-enhanced ER stress, cellular senescence, and MMP and ATP abnormities of endometriosis GCs in vitro and in vivo. In conclusion, our results indicated excessive reactive oxygen species induces senescence of endometriosis GCs via arouse ER stress, which finally contributes to endometriosis-associated infertility, and melatonin may represent a novel adjuvant therapy strategy for endometriosis-associated infertility. Endometriosis patients ovary cumulus granulosa cells (GCs) show senescence phenotype. Excessive oxidative stress in GCs drives cellular senescence via activating ER stress. Melatonin alleviates ER stress and GCs senescence in vitro and in vivo.
Collapse
Affiliation(s)
- Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Qianmeng Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Hanjin Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
18
|
Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Sci Rep 2020; 10:80. [PMID: 31919463 PMCID: PMC6952450 DOI: 10.1038/s41598-019-57050-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Leucocyte telomere length (LTL) has been reported to be linked to ageing, cancer and cardiovascular disease (CVD). This study aimed to explore the association between LTL and CVD risk in a nationally representative sample of U.S. adults. Complex associations, including nonlinearity and interaction, were also examined. A total of 7,378 subjects from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 were collected. Telomere length was detected from DNA samples and expressed as the mean T/S ratio (telomere repeats per single-copy gene). We performed multiple logistic regression models and interactive analysis to explore the associations between LTL and CVD risk by adjusting for potential confounders. We also performed a sensitivity analysis to investigate the robustness of our results. Among all participants, LTL was associated with the risk of CVD (OR = 0.79, 95% CI: 0.63~0.98, P = 0.033) in a linear manner rather than in a nonlinear manner (P = 0.874). Interaction effects of LTL with both education (P = 0.017) and hypertension (P = 0.007) were observed. Furthermore, using subgroup analyses, protective effects of LTL on CVD risk were found in females and in individuals who were college graduates or above, had serum cotinine >10 ng/ml, did not have hypertension, or had normal white blood cell levels. LTL is linearly inversely associated with CVD risk in the general population of the United States.
Collapse
|
19
|
Wei Z, Zhang M, Zhang X, Yi M, Xia X, Fang X. NAT2 gene polymorphisms and endometriosis risk: A PRISMA-compliant meta-analysis. PLoS One 2019; 14:e0227043. [PMID: 31881062 PMCID: PMC6934289 DOI: 10.1371/journal.pone.0227043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Endometriosis is a common chronic, gynecological disease. Despite many studies on the role of N-acetyltransferase 2 (NAT2) in endometriosis, its clinical significance is unclear. In this study, associations between NAT2 phenotypes as well as single nucleotide polymorphisms (SNPs) within NAT2 (i.e. rs1799929, rs1799930, rs1208, and rs1799931) and endometriosis risk were evaluated using a meta-analysis approach. METHODS Embase, PubMed, ClinicalTrials.gov, CNKI (China National Knowledge Infrastructure), Wanfang databases, Cochrane Library for clinical trials, and Web of Science were searched to identify relevant articles. ORs (odds ratios) and 95% CIs (95% confidence intervals) were used to estimate the associations between NAT2 polymorphisms and endometriosis risk. Heterogeneity among included studies was also assessed. In addition, a subgroup analysis of NAT2 phenotypes and endometriosis risk based on ethnicity was performed. RESULTS Nine case-control studies met the inclusion criteria. The odds ratio was 2.30 (95% CI: 1.61-3.28) for the NAT2 slow acetylation phenotype versus the intermediate + fast acetylation phenotype in the Asian population. These results suggest that Asian individuals with the NAT2 slow acetylation phenotype have a 130% increased risk of endometriosis. A significant association was also found for rs1799930 (OR = 0.74; 95% CI, 0.59-0.92), suggesting that individuals with this mutant genotype have a 26% decreased risk of endometriosis. CONCLUSIONS The rs1799930 mutant genotypes are associated with a decreased risk of endometriosis. No statistically significant associations were found between rs1799931, rs1208, or rs1799929 and endometriosis. Based on a subgroup analysis based on ethnicity, the NAT2 slow acetylation phenotype was found to increase the risk of endometriosis in Asians. No statistically significant associations were found between the NAT2 slow acetylation phenotype and endometriosis risk in Caucasians. Accordingly, NAT2 phenotypes and SNPs are potential biomarkers for the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Zhangming Wei
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
20
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. Int J Mol Sci 2018; 19:ijms19103240. [PMID: 30347708 PMCID: PMC6214006 DOI: 10.3390/ijms19103240] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer.
Collapse
|
22
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
23
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
24
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|