1
|
Ahuja N, Cao X, Schultz DT, Picciani N, Lord A, Shao S, Jia K, Burdick DR, Haddock SHD, Li Y, Dunn CW. Giants among Cnidaria: Large Nuclear Genomes and Rearranged Mitochondrial Genomes in Siphonophores. Genome Biol Evol 2024; 16:evae048. [PMID: 38502059 PMCID: PMC10980510 DOI: 10.1093/gbe/evae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Siphonophores (Cnidaria: Hydrozoa) are abundant predators found throughout the ocean and are important constituents of the global zooplankton community. They range in length from a few centimeters to tens of meters. They are gelatinous, fragile, and difficult to collect, so many aspects of the biology of these roughly 200 species remain poorly understood. To survey siphonophore genome diversity, we performed Illumina sequencing of 32 species sampled broadly across the phylogeny. Sequencing depth was sufficient to estimate nuclear genome size from k-mer spectra in six specimens, ranging from 0.7 to 2.3 Gb, with heterozygosity estimates between 0.69% and 2.32%. Incremental k-mer counting indicates k-mer peaks can be absent with nearly 20× read coverage, suggesting minimum genome sizes range from 1.4 to 5.6 Gb in the 25 samples without peaks in the k-mer spectra. This work confirms most siphonophore nuclear genomes are large relative to the genomes of other cnidarians, but also identifies several with reduced size that are tractable targets for future siphonophore nuclear genome assembly projects. We also assembled complete mitochondrial genomes for 33 specimens from these new data, indicating a conserved gene order shared among nonsiphonophore hydrozoans, Cystonectae, and some Physonectae, revealing the ancestral mitochondrial gene order of siphonophores. Our results also suggest extensive rearrangement of mitochondrial genomes within other Physonectae and in Calycophorae. Though siphonophores comprise a small fraction of cnidarian species, this survey greatly expands our understanding of cnidarian genome diversity. This study further illustrates both the importance of deep phylogenetic sampling and the utility of k-mer-based genome skimming in understanding the genomic diversity of a clade.
Collapse
Affiliation(s)
- Namrata Ahuja
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Natasha Picciani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kejue Jia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Baden T, Briseño J, Coffing G, Cohen-Bodénès S, Courtney A, Dickerson D, Dölen G, Fiorito G, Gestal C, Gustafson T, Heath-Heckman E, Hua Q, Imperadore P, Kimbara R, Król M, Lajbner Z, Lichilín N, Macchi F, McCoy MJ, Nishiguchi MK, Nyholm SV, Otjacques E, Pérez-Ferrer PA, Ponte G, Pungor JR, Rogers TF, Rosenthal JJC, Rouressol L, Rubas N, Sanchez G, Santos CP, Schultz DT, Seuntjens E, Songco-Casey JO, Stewart IE, Styfhals R, Tuanapaya S, Vijayan N, Weissenbacher A, Zifcakova L, Schulz G, Weertman W, Simakov O, Albertin CB. Cephalopod-omics: Emerging Fields and Technologies in Cephalopod Biology. Integr Comp Biol 2023; 63:1226-1239. [PMID: 37370232 PMCID: PMC10755191 DOI: 10.1093/icb/icad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - John Briseño
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabrielle Coffing
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Sophie Cohen-Bodénès
- Laboratoire des Systèmes Perceptifs, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dominick Dickerson
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Gül Dölen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Camino Gestal
- Laboratory of Marine Molecular Pathobiology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo 36208, Spain
| | | | - Elizabeth Heath-Heckman
- Departments of Integrative Biology and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaz Hua
- Department of Ecology and Evolution, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Mirela Król
- Adam Mickiewicz University in Poznań, Poznań 61-712, Poland
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicolás Lichilín
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Matthew J McCoy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Michele K Nishiguchi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Pedro Antonio Pérez-Ferrer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Judit R Pungor
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Thea F Rogers
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Joshua J C Rosenthal
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| | - Lisa Rouressol
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Noelle Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Catarina Pereira Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Jeremea O Songco-Casey
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Ian Erik Stewart
- Neural Circuits and Behaviour Lab, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Surangkana Tuanapaya
- Laboratory of genetics and applied breeding of molluscs, Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Nidhi Vijayan
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | | | - Lucia Zifcakova
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | | | - Willem Weertman
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Caroline B Albertin
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| |
Collapse
|