1
|
Pickett CJ, Ryan J, Davidson B. Acquisition of polymorphism in the chordate doliolids. Integr Comp Biol 2024; 64:1255-1268. [PMID: 38992257 DOI: 10.1093/icb/icae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
In polymorphic organisms, a single genome is deployed to program numerous, morphologically distinct body plans within a colony. This complex life history trait has evolved independently within a limited subset of animal taxa. Reconstructing the underlying genetic, cellular, and developmental changes that drove the emergence of polymorphic colonies represents a promising avenue for exploring diversifying selection and resulting impacts on developmental gene regulatory networks. Doliolids are the only polymorphic chordate, deploying a single genome to program distinct morphs specialized for locomotion, feeding, asexual, or sexual reproduction. In this review, we provide a detailed summary of doliolid anatomy, development, taxonomy, ecology, life history, and the cellular basis for doliolid polymorphism. In order to frame the potential evolutionary and developmental insights that could be gained by studying doliolids, we provide a broader overview of polymorphism. We then discuss how comparative studies of polymorphic cnidarians have begun to illuminate the genetic basis of this unusual and complex life history strategy. We then provide a summary of life history divergence in the chordates, particularly among doliolids and their polymorphic cousins, the salps and pyrosomes.
Collapse
Affiliation(s)
- C J Pickett
- Department of Biology, Swarthmore College, 19081, Swarthmore, USA
| | - Joseph Ryan
- Whitney Laboratory for Marine Bioscience, 32080, St. Augustine, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, 19081, Swarthmore, USA
| |
Collapse
|
2
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
3
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600120. [PMID: 38979138 PMCID: PMC11230211 DOI: 10.1101/2024.06.21.600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6000 m. The final elevation of 6000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to a combination of genetically based local adaptation and plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| |
Collapse
|
4
|
Reduction, rearrangement, fusion, and hypertrophy: evolution of the muscular system in polymorphic zooids of cheilostome Bryozoa. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Munro C, Zapata F, Howison M, Siebert S, Dunn CW. Evolution of gene expression across species and specialized zooids in Siphonophora. Mol Biol Evol 2022; 39:6521037. [PMID: 35134205 PMCID: PMC8844502 DOI: 10.1093/molbev/msac027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Siphonophores are complex colonial animals, consisting of asexually produced bodies (zooids) that are functionally specialized for specific tasks, including feeding, swimming, and sexual reproduction. Though this extreme functional specialization has captivated biologists for generations, its genomic underpinnings remain unknown. We use RNA-seq to investigate gene expression patterns in five zooids and one specialized tissue across seven siphonophore species. Analyses of gene expression across species present several challenges, including identification of comparable expression changes on gene trees with complex histories of speciation, duplication, and loss. We examine gene expression within species, conduct classical analyses examining expression patterns between species, and introduce species branch filtering, which allows us to examine the evolution of expression across species in a phylogenetic framework. Within and across species, we identified hundreds of zooid-specific and species-specific genes, as well as a number of putative transcription factors showing differential expression in particular zooids and developmental stages. We found that gene expression patterns tended to be largely consistent in zooids with the same function across species, but also some large lineage-specific shifts in gene expression. Our findings show that patterns of gene expression have the potential to define zooids in colonial organisms. Traditional analyses of the evolution of gene expression focus on the tips of gene phylogenies, identifying large-scale expression patterns that are zooid or species variable. The new explicit phylogenetic approach we propose here focuses on branches (not tips) offering a deeper evolutionary perspective into specific changes in gene expression within zooids along all branches of the gene (and species) trees.
Collapse
Affiliation(s)
- Catriona Munro
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Howison
- Research Improving People’s Lives (RIPL), Providence, RI, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California, 95616, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
Velotta JP, Robertson CE, Schweizer RM, McClelland GB, Cheviron ZA. Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice. Mol Biol Evol 2021; 37:2309-2321. [PMID: 32243546 DOI: 10.1093/molbev/msaa086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aerobic performance is tied to fitness as it influences an animal's ability to find food, escape predators, or survive extreme conditions. At high altitude, where low O2 availability and persistent cold prevail, maximum metabolic heat production (thermogenesis) is an aerobic performance trait that is closely linked to survival. Understanding how thermogenesis evolves to enhance survival at high altitude will yield insight into the links between physiology, performance, and fitness. Recent work in deer mice (Peromyscus maniculatus) has shown that adult mice native to high altitude have higher thermogenic capacities under hypoxia compared with lowland conspecifics, but that developing high-altitude pups delay the onset of thermogenesis. This finding suggests that natural selection on thermogenic capacity varies across life stages. To determine the mechanistic cause of this ontogenetic delay, we analyzed the transcriptomes of thermoeffector organs-brown adipose tissue and skeletal muscle-in developing deer mice native to low and high altitude. We demonstrate that the developmental delay in thermogenesis is associated with adaptive shifts in the expression of genes involved in nervous system development, fuel/O2 supply, and oxidative metabolism pathways. Our results demonstrate that selection has modified the developmental trajectory of the thermoregulatory system at high altitude and has done so by acting on the regulatory systems that control the maturation of thermoeffector tissues. We suggest that the cold and hypoxic conditions of high altitude force a resource allocation tradeoff, whereby limited energy is allocated to developmental processes such as growth, versus active thermogenesis, during early development.
Collapse
Affiliation(s)
| | | | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | | | | |
Collapse
|
7
|
Sun R, Bao M, Long X, Yuan Y, Wu M, Li X, Bao J. Metabolic gene NR4A1 as a potential therapeutic target for non-smoking female non-small cell lung cancer patients. Thorac Cancer 2019; 10:715-727. [PMID: 30806032 PMCID: PMC6449245 DOI: 10.1111/1759-7714.12989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although cigarette smoking is considered one of the key risk factors for lung cancer, 15% of male patients and 53% of female patients with lung cancer are non-smokers. Metabolic changes are critical features of cancer. Therapeutic target identification from a metabolic perspective in non-small cell lung cancer (NSCLC) tissue of female non-smokers has long been ignored. RESULTS Based on microarray data retrieved from Affymetrix expression arrays E-GEOD-19804, we found that the downregulated genes in non-smoking female NSCLC patients tended to participate in protein/amino acid and lipid metabolism, while upregulated genes were more involved in protein/amino acid and carbohydrate metabolism. Combining nutrient metabolic co-expression, protein-protein interaction network construction and overall survival assessment, we identified NR4A1 and TIE1 as potential therapeutic targets for NSCLC in female non-smokers. To accelerate the drug development for non-smoking female NSCLC patients, we identified nilotinib as a potential agonist targeting NR4A1 encoded protein by molecular docking and molecular dynamic stimulation. We also show that nilotinib inhibited proliferation and induced senescence of cells in non-smoking female NSCLC patients in vitro. CONCLUSIONS These results not only uncover nutrient metabolic characteristics in non-smoking female NSCLC patients, but also provide a new paradigm for identifying new targets and drugs for novel therapy for such patients.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Non-Smokers/statistics & numerical data
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Maps
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptor, TIE-1/genetics
- Receptor, TIE-1/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Rong Sun
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Min‐Yue Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Long
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Yuan Yuan
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Miao‐Miao Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin‐Ku Bao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
8
|
Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 2018; 72:2712-2727. [PMID: 30318588 DOI: 10.1111/evo.13626] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
How often phenotypic plasticity acts to promote or inhibit adaptive evolution is an ongoing debate among biologists. Recent work suggests that adaptive phenotypic plasticity promotes evolutionary divergence, though several studies have also suggested that maladaptive plasticity can potentiate adaptation. The role of phenotypic plasticity, adaptive, or maladaptive, in evolutionary divergence remains controversial. We examined the role of plasticity in evolutionary divergence between two species of Peromyscus mice that differ in native elevations. We used cardiac mass as a model phenotype, since ancestral hypoxia-induced responses of the heart may be both adaptive and maladaptive at high-altitude. While left ventricle growth should enhance oxygen delivery to tissues, hypertrophy of the right ventricle can lead to heart failure and death. We compared left- and right-ventricle plasticity in response to hypoxia between captive-bred P. leucopus (representing the ancestral lowland condition) and P. maniculatus from high-altitude. We found that maladaptive ancestral plasticity in right ventricle hypertrophy is reduced in high-altitude deer mice. Analysis of the heart transcriptome suggests that changes in expression of inflammatory signaling genes, particularly interferon regulatory factors, contribute to the suppression of right ventricle hypertrophy. We found weak evidence that adaptive plasticity of left ventricle mass contributes to evolution. Our results suggest that selection to suppress ancestral maladaptive plasticity plays a role in adaptation.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cole J Wolf
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
9
|
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016; 39:157-167. [DOI: 10.1016/j.gde.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
10
|
Velotta JP, Jones J, Wolf CJ, Cheviron ZA. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Mol Ecol 2016; 25:2870-86. [PMID: 27126783 DOI: 10.1111/mec.13661] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
Abstract
For small mammals living at high altitude, aerobic heat generation (thermogenesis) is essential for survival during prolonged periods of cold, but is severely impaired under conditions of hypobaric hypoxia. Recent studies in deer mice (Peromyscus maniculatus) reveal adaptive enhancement of thermogenesis in high- compared to low-altitude populations under hypoxic cold stress, an enhancement that is attributable to modifications in the aerobic metabolism of muscles used in shivering. However, because small mammals rely heavily on nonshivering mechanisms for cold acclimatization, we tested for evidence of adaptive divergence in nonshivering thermogenesis (NST) under hypoxia. To do so, we measured NST and characterized transcriptional profiles of brown adipose tissue (BAT) in high- and low-altitude deer mice that were (i) wild-caught and acclimatized to their native altitude, and (ii) born and reared under common garden conditions at low elevation. We found that NST performance under hypoxia is enhanced in wild-caught, high-altitude deer mice, a difference that is associated with increased expression of coregulated genes that influence several physiological traits. These traits include vascularization and O2 supply to BAT, brown adipocyte proliferation and the uncoupling of oxidative phosphorylation from ATP synthesis in the generation of heat. Our results suggest that acclimatization to hypoxic cold stress is facilitated by enhancement of nonshivering heat production, which is driven by regulatory plasticity in a suite of genes that influence intersecting physiological pathways.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61081, USA
| | - Jennifer Jones
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61081, USA
| | - Cole J Wolf
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61081, USA
| | - Zachary A Cheviron
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61081, USA
| |
Collapse
|
11
|
Reyes-Bermudez A, Villar-Briones A, Ramirez-Portilla C, Hidaka M, Mikheyev AS. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks. Genome Biol Evol 2016; 8:851-70. [PMID: 26941230 PMCID: PMC4824149 DOI: 10.1093/gbe/evw042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/20/2022] Open
Abstract
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis duringAcropora digitifera's development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression inA. digitiferais regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- Okinawa Institute of Science and Technology, Okinawa, Japan School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | | | | - Michio Hidaka
- School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | |
Collapse
|
12
|
Padilla DK, Tsukimura B. A New Organismal Systems Biology: How Animals Walk the Tight Rope between Stability and Change. Integr Comp Biol 2014; 54:218-22. [DOI: 10.1093/icb/icu038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|