1
|
Mapalo MA, Game M, Smith FW, Ortega-Hernández J. Expression of distal limb patterning genes in Hypsibius exemplaris indicate regionalization and suggest distal identity of tardigrade legs. EvoDevo 2024; 15:15. [PMID: 39538290 PMCID: PMC11562647 DOI: 10.1186/s13227-024-00235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Panarthropods, a major group of invertebrate animals comprised of arthropods, onychophorans, and tardigrades, are the only limb-bearing members of Ecdysozoa. The complexity and versatility of panarthropod paired limbs has prompted great interest in their development to better understand the formation of these structures and the genes involved in this process. However, studies of limb patterning and development are overwhelmingly focused on arthropods, followed by select work on onychophorans but almost entirely lacking for tardigrades. This model organism bias is inherently limited and precludes a comparative analysis of how panarthropod legs originated, have evolved, and the likely limb patterning genes present in the earliest panarthropod ancestors. In this study, we investigated tardigrade homologs of seven arthropod distal limb patterning genes (apterous, aristaless, BarH1, clawless, Lim1, rotund, and spineless) to better characterize tardigrade limb development in a comparative context. RESULTS We detected homologs of all seven genes in the eutardigrade Hypsibius exemplaris and heterotardigrade Echiniscoides cf. sigismundi suggesting their conservation in both tardigrade lineages. Hybridization chain reaction experiments in H. exemplaris reveal a regionalized expression pattern for the genes aristaless, BarH1, clawless, rotund and spineless. CONCLUSION The observed regionalized expression of the distal limb patterning genes in H. exemplaris might reflect the external morphological features of tardigrade legs, such as the distal claws, sensory organs in the proximal region, and specific muscle attachment sites. The comparison between the expression of these limb patterning genes in H. exemplaris relative to other panarthropods suggests their conserved role in the last common panarthropod ancestor, such as establishing the distal limb end and the distribution of sensory structures. Our results support the hypothesis that tardigrade legs are homologous to the distal region of other panarthropod limbs, as suggested by previous work on the expression of leg gap genes in H. exemplaris.
Collapse
Affiliation(s)
- Marc A Mapalo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mandy Game
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA.
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Janssen R, Pechmann M. Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider. Dev Genes Evol 2023; 233:107-121. [PMID: 37495828 PMCID: PMC10746769 DOI: 10.1007/s00427-023-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
3
|
Pates S, Botting JP, Muir LA, Wolfe JM. Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution. Nat Commun 2022; 13:6969. [PMID: 36379946 PMCID: PMC9666559 DOI: 10.1038/s41467-022-34204-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial step in the evolution of Euarthropoda (chelicerates, myriapods, pancrustaceans) was the transition between fossil groups that possessed frontal appendages innervated by the first segment of the brain (protocerebrum), and living groups with a protocerebral labrum and paired appendages innervated by the second brain segment (deutocerebrum). Appendage homologies between the groups are controversial. Here we describe two specimens of opabiniid-like euarthropods, each bearing an anterior proboscis (a fused protocerebral appendage), from the Middle Ordovician Castle Bank Biota, Wales, UK. Phylogenetic analyses support a paraphyletic grade of stem-group euarthropods with fused protocerebral appendages and a posterior-facing mouth, as in the iconic Cambrian panarthropod Opabinia. These results suggest that the labrum may have reduced from an already-fused proboscis, rather than a pair of arthropodized appendages. If some shared features between the Castle Bank specimens and radiodonts are considered convergent rather than homologous, phylogenetic analyses retrieve them as opabiniids, substantially extending the geographic and temporal range of Opabiniidae.
Collapse
Affiliation(s)
- Stephen Pates
- grid.5335.00000000121885934Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joseph P. Botting
- grid.9227.e0000000119573309Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China ,grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Lucy A. Muir
- grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Joanna M. Wolfe
- grid.38142.3c000000041936754XMuseum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
4
|
Lev O, Edgecombe GD, Chipman AD. Serial Homology and Segment Identity in the Arthropod Head. Integr Org Biol 2022; 4:obac015. [PMID: 35620450 PMCID: PMC9128542 DOI: 10.1093/iob/obac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterior-most unit of the crown-group arthropod body plan includes three segments, the pre-gnathal segments, that contain three neuromeres that together comprise the brain. Recent work on the development of this anterior region has shown that its three units exhibit many developmental differences to the more posterior segments, to the extent that they should not be considered serial homologs. Building on this revised understanding of the development of the pre-gnathal segments, we suggest a novel scenario for arthropod head evolution. We posit an expansion of an ancestral single-segmented head at the transition from Radiodonta to Deuteropoda in the arthropod stem group. The expanded head subdivided into three segmental units, each maintaining some of the structures of the ancestral head. This scenario is consistent with what we know of head evolution from the fossil record and helps reconcile some of the debates about early arthropod evolution.
Collapse
Affiliation(s)
- Oren Lev
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ariel D Chipman
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| |
Collapse
|
5
|
Pates S, Wolfe JM, Lerosey-Aubril R, Daley AC, Ortega-Hernández J. New opabiniid diversifies the weirdest wonders of the euarthropod stem group. Proc Biol Sci 2022; 289:20212093. [PMID: 35135344 PMCID: PMC8826304 DOI: 10.1098/rspb.2021.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Once considered 'weird wonders' of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Scholtz G. Screwed up: Spirality of segments and other iterated structures suggest an underlying principle of seriality in bilaterians. J Morphol 2021; 282:833-846. [PMID: 33749870 DOI: 10.1002/jmor.21350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
This review deals with helicomery, that is, the specific malformation of a spiral arrangement of segments and other serial structures. Helicomery was first described in annelid and arthropod body segments. However, corresponding patterns occur in arthropod appendages and other bilaterians with serially arranged body parts, such as tapeworms, nematodes, vertebrates, and probably chitons. The specifics of the spirals such as length, orientation, and handedness are described. Most spirals are dorsal and comprise only a few loops. Helicomery is formed by a shift of cells during development or in adults caused by changes in cell adhesion or mechanical impacts such as lesions. A model for the formation of helicomery is proposed, which is based on medieval church labyrinths. These complex spiral structures are derived from concentric lines by the shift of relatively few tiles. This principle of "small causes, great effect" also applies to "spiral segments," because helicomery dissolves segmental patterns and questions the concept of segments as distinct structures. The widespread occurrence of helicomery in nonhomologous serial structures might indirectly indicate an underlying principle of seriality among Bilateria.
Collapse
Affiliation(s)
- Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| |
Collapse
|
7
|
Edgecombe GD. Arthropod Origins: Integrating Paleontological and Molecular Evidence. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phylogenomics underpins a stable and mostly well-resolved hypothesis for the interrelationships of extant arthropods. Exceptionally preserved fossils are integrated into this framework by coding their morphological characters, as exemplified by total-evidence dating approaches that treat fossils as dated tips in analyses numerically dominated by molecular data. Cambrian fossils inform on the sequence of character acquisition in the arthropod stem group and in the stems of its main extant clades. The arthropod head problem incorporates unique appendage combinations and remains of the nervous system in fossils into a scheme mostly based on neuroanatomy and Hox expression domains for extant forms. Molecular estimates of arthropod origins in the Cryogenian or Ediacaran predate a coherent picture from the arthropod fossil record, which commences as trace fossils in the earliest Cambrian. Probabilistic morphological clock analysis of trilobites, which exemplify the earliest arthropod body fossils, supports a Cambrian origin, without the need to posit an unfossilized Ediacaran history.
Collapse
Affiliation(s)
- Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
8
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
9
|
Heingård M, Turetzek N, Prpic NM, Janssen R. FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning. EvoDevo 2019; 10:28. [PMID: 31728178 PMCID: PMC6842170 DOI: 10.1186/s13227-019-0141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (Fox) transcription factors evolved early in animal evolution and represent important components of conserved gene regulatory networks (GRNs) during animal development. Most of the researches concerning Fox genes, however, are on vertebrates and only a relatively low number of studies investigate Fox gene function in invertebrates. In addition to this shortcoming, the focus of attention is often restricted to a few well-characterized Fox genes such as FoxA (forkhead), FoxC (crocodile) and FoxQ2. Although arthropods represent the largest and most diverse animal group, most other Fox genes have not been investigated in detail, not even in the arthropod model species Drosophila melanogaster. In a general gene expression pattern screen for panarthropod Fox genes including the red flour beetle Tribolium castaneum, the pill millipede Glomeris marginata, the common house spider Parasteatoda tepidariorum, and the velvet worm Euperipatoides kanangrensis, we identified a Fox gene with a highly conserved expression pattern along the ventral ectoderm of arthropod and onychophoran limbs. Functional investigation of FoxB in Parasteatoda reveals a hitherto unrecognized important function of FoxB upstream of wingless (wg) and decapentaplegic (dpp) in the GRN orchestrating dorsal–ventral limb patterning.
Collapse
Affiliation(s)
- Miriam Heingård
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,4Present Address: Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund, Sweden
| | - Natascha Turetzek
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Present Address: Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,5Present Address: Bereich Allgemeine Zoologie und Entwicklungsbiologie, Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
10
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
12
|
Auman T, Chipman AD. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans. Integr Comp Biol 2018; 57:523-532. [PMID: 28957519 DOI: 10.1093/icb/icx035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
13
|
Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun 2018; 9:470. [PMID: 29391458 PMCID: PMC5794847 DOI: 10.1038/s41467-017-02754-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
14
|
Chipman AD, Erwin DH. The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development-An Introduction to the Symposium. Integr Comp Biol 2017; 57:450-454. [PMID: 28957527 DOI: 10.1093/icb/icx094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The last few years have seen a significant increase in the amount of data we have about the evolution of the arthropod body plan. This has come mainly from three separate sources: a new consensus and improved resolution of arthropod phylogeny, based largely on new phylogenomic analyses; a wealth of new early arthropod fossils from a number of Cambrian localities with excellent preservation, as well as a renewed analysis of some older fossils; and developmental data from a range of model and non-model pan-arthropod species that shed light on the developmental origins and homologies of key arthropod traits. However, there has been relatively little synthesis among these different data sources, and the three communities studying them have little overlap. The symposium "The Evolution of Arthropod Body Plans-Integrating Phylogeny, Fossils and Development" brought together leading researchers in these three disciplines and made a significant contribution to the emerging synthesis of arthropod evolution, which will help advance the field and will be useful for years to come.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Douglas H Erwin
- Department of Paleobiology, MRC-121 National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
| |
Collapse
|