1
|
Heng EE, Wang H, Obafemi O, Marsden A, Woo YJ, Boyd JH. The biomechanics and prevention of vein graft failure in coronary revascularization. VESSEL PLUS 2023; 7:31. [PMID: 39639997 PMCID: PMC11620001 DOI: 10.20517/2574-1209.2023.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Saphenous vein grafts (SVGs) are the most widely used conduit in coronary artery bypass grafting (CABG) surgery; however, SVG failures due to neointimal hyperplasia present a significant long-term limitation to the effectiveness of myocardial revascularization. This review will provide a comprehensive overview of the biological mechanisms of vein graft failure, including compensatory endothelial proliferation, extracellular matrix deposition, and adventitial disruption. We will discuss historical and emerging strategies for vein graft failure prevention with a focus on the role of mechanical vein graft support using external stenting. Finally, we will highlight the results of preclinical and human trials and discuss future directions for investigation.
Collapse
Affiliation(s)
- Elbert E. Heng
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oluwatomisin Obafemi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alison Marsden
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94035, USA
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94035, USA
| | - Jack H. Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Chen H, Wang Z, Si K, Wu X, Ni H, Tang Y, Liu W, Wang Z. External stenting for saphenous vein grafts in coronary artery bypass grafting: A meta-analysis. Eur J Clin Invest 2023; 53:e14046. [PMID: 37395498 DOI: 10.1111/eci.14046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES Autologous saphenous vein grafts (SVGs) are the most commonly used bypass conduits in coronary artery bypass grafting (CABG) with multivessel coronary artery disease. Although external support devices for SVGs have shown promising outcomes, the overall efficacy and safety remains controversial. We aimed to evaluate external stenting for SVGs in CABG versus non-stented SVGs. METHODS MEDLINE, EMBASE, Cochrane Library and clinicaltrails.gov were searched for randomized controlled trials (RCTs) to evaluate external-stented SVGs versus non-stented SVGs in CABG up to 31 August 2022. The risk ratio and mean difference with 95% confidence interval were analysed. The primary efficacy outcomes included intimal hyperplasia area and thickness. The secondary efficacy outcomes were graft failure (≥50% stenosis) and lumen diameter uniformity. RESULTS We pooled 438 patients from three RCTs. The external stented SVGs group showed significant reductions in intimal hyperplasia area (MD: -0.78, p < 0.001, I2 = 0%) and thickness (MD: -0.06, p < 0.001, I2 = 0%) compared to the non-stented SVGs group. Meanwhile, external support devices improved lumen uniformity with Fitzgibbon I classification (risk ratio (RR):1.1595, p = 0.05, I2 = 0%). SVG failure rates were not increased in the external stented SVGs group during the short follow-up period (RR: 1.14, p = 0.38, I2 = 0%). Furthermore, the incidences of mortality and major cardiac and cerebrovascular events were consistent with previous reports. CONCLUSIONS External support devices for SVGs significantly reduced the intimal hyperplasia area and thickness, and improved the lumen uniformity, assessed with the Fitzgibbon I classification. Meanwhile, they did not increase the overall SVG failure rate.
Collapse
Affiliation(s)
- Huiru Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoxiao Wu
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanbing Tang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Wei Liu
- Department of Medicine, The Tianjin North China Hospital, Tianjin, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, China
| |
Collapse
|
3
|
Goldstein DJ. Device Profile of the VEST for External Support of SVG Coronary Artery Bypass Grafting: Historical Development, Current Status and Future Directions. Expert Rev Med Devices 2021; 18:921-931. [PMID: 34311644 DOI: 10.1080/17434440.2021.1960504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A search for strategies to address saphenous vein graft (SVG) failure - the main factor limiting the long-term success of coronary bypass grafting - has led to trialing of external stenting technologies. AREAS COVERED The manuscript covers historical development and current status of external scaffolding for the treatment of SVG intimal hyperplasia. Comprehensive literature review and personal communication with VGS leadership, the developer of the VEST device, served as the sources. EXPERT OPINION If the external scaffolding concept proves to be successful in mitigating the intimal hyperplasia inherent to arterialized saphenous vein conduits, it could have a dramatic impact on the recurrence of anginal symptoms, the need for repeat revascularization, and the incidence of myocardial infarction following CABG surgery. These laudable sequelae could ultimately convey significant public health repercussions by reducing healthcare resource use and improving the long-term survival and quality of life of CABG recipients.
Collapse
Affiliation(s)
- Daniel J Goldstein
- Montefiore Medical Center - Cardiothoracic Surgery, Bainbridge Ave MAP Building, 5th Fl Bronx, New York, USA
| |
Collapse
|
4
|
Ding L, Hang C, Cheng S, Jia L, Mou L, Tang L, Zhang C, Xie Y, Zheng W, Zhang Y, Jiang X. A Soft, Conductive External Stent Inhibits Intimal Hyperplasia in Vein Grafts by Electroporation and Mechanical Restriction. ACS NANO 2020; 14:16770-16780. [PMID: 33030886 DOI: 10.1021/acsnano.0c04827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intimal hyperplasia (IH) in vein grafts (VGs) is a major issue in coronary artery bypass grafting (CABG) surgery. Although external stents can attenuate IH of VGs to some extent, none of the existing external stents have shown satisfactory clinical outcomes. Here we develop a flexible, biodegradable, and conductive external metal-polymer conductor stent (MPCS) that can electroporate the vessel wall and produce a protein that prevents IH. We designed the plasmid DNA encoding the tissue inhibitor of metalloproteinases-3 (TIMP-3) and lyophilized it on the inner surface of the MPCS to deliver into the adventitia and the middle layer of VGs for gene therapy. Coupled with its continuous mechanical support to prevent dilation after implanting, the MPCS can inhibit the IH of VGs significantly in the rabbit model. This proof-of-concept demonstration may aid the development of other implantable bioelectronics for electroporation gene therapy.
Collapse
Affiliation(s)
- Li Ding
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Hang
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyu Cheng
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liujun Jia
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Mou
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lixue Tang
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chunliang Zhang
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yangzhouyun Xie
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenfu Zheng
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xingyu Jiang
- Department of Biomedical Engineering and Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- National Center for NanoScience and Technology and University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Ren YS, Li LF, Peng T, Tan YJ, Sun Y, Cheng GL, Zhang GM, Li J. The effect of milrinone on mortality in adult patients who underwent CABG surgery: a systematic review of randomized clinical trials with a meta-analysis and trial sequential analysis. BMC Cardiovasc Disord 2020; 20:328. [PMID: 32640988 PMCID: PMC7346403 DOI: 10.1186/s12872-020-01598-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background As an inodilator, milrinone is commonly used for patients who undergo coronary artery bypass graft (CABG) surgery because of its effectiveness in decreasing the cardiac index and mitral regurgitation. The aim of this study was to perform a systematic review and meta-analysis of existing studies from the past 20 years to evaluate the impact of milrinone on mortality in patients who undergo CABG surgery. Methods We performed a systematic literature search on the application of milrinone in patients who underwent CABG surgery in studies published between 1997 and 2017 in BioMed Central, PubMed, EMBASE, and the Cochrane Central Register. The included studies evaluated milrinone groups compared to groups receiving either placebo or standard treatment and further compared the systemic administration. Results The network meta-analysis included 723 patients from 16 randomized clinical trials. Overall, there was no significant difference in mortality between the milrinone group and the placebo/standard care group when patients underwent CABG surgery. In addition, 9 trials (with 440 randomized patients), 4 trials (with 212 randomized patients), and 10 trials (with 470 randomized patients) reported that the occurrence of myocardial infarction (MI), myocardial ischemia, and arrhythmia was lower in the milrinone group than in the placebo/standard care group. Between the milrinone treatment and placebo/standard care groups, the occurrence of myocardial infarction, myocardial ischemia, and arrhythmia was significantly different. However, the occurrence of stroke and renal failure, the duration of inotropic support (h), the need for an intra-aortic balloon pump (IABP), and mechanical ventilation (h) between these two groups showed no differences. Conclusions Based on the current results, compared with placebo, milrinone might be unable to decrease mortality in adult CABG surgical patients but can significantly ameliorate the occurrence of MI, myocardial ischemia, and arrhythmia. These results provide evidence for the further clinical application of milrinone and of therapeutic strategies for CABG surgery. However, along with milrinone application in clinical use, sufficient data from randomized clinical trials need to be collected, and the potential benefits and adverse effects should be analyzed and reevaluated.
Collapse
Affiliation(s)
- Yu-Shan Ren
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutica, Lunan Pharmaceutical Group Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Lan-Fang Li
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Tao Peng
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Yu-Jun Tan
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutica, Lunan Pharmaceutical Group Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Ying Sun
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Guo-Liang Cheng
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Gui-Min Zhang
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutica, Lunan Pharmaceutical Group Co, Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China
| | - Jie Li
- Shandong New Time Pharmaceutical Co, Ltd., Linyi, China. .,National Engineering and Technology Research Center of Chirality Pharmaceutica, Lunan Pharmaceutical Group Co, Ltd., Linyi, China. .,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co, Ltd., Linyi, China.
| |
Collapse
|
6
|
Gaudino MFL, Spadaccio C, Taggart DP. State-of-the-Art Coronary Artery Bypass Grafting: Patient Selection, Graft Selection, and Optimizing Outcomes. Interv Cardiol Clin 2019; 8:173-198. [PMID: 30832941 DOI: 10.1016/j.iccl.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite the progressive expansion of clinical indications for percutaneous coronary intervention and the increasingly high risk profile of referred patients, coronary artery bypass grafting (CABG) remains the mainstay in multivessel disease, providing good long-term outcomes with low complication rates. Multiple arterial grafting, especially if associated with anaortic techniques, might provide the best longer-term outcomes. A surgical approach individualized to the patients' clinical and anatomic characteristics, and surgeon and team experience, are key to excellent outcomes. Current evidence regarding patient selection, indications, graft selection, and potential strategies to optimize outcomes in patients treated with CABG is summarized.
Collapse
Affiliation(s)
- Mario F L Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, New York, NY 10021, USA.
| | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Agamemnon Street, Clydebank, Glasgow G81 4DY, UK; University of Glasgow, Institute of Cardiovascular and Medical Sciences, 126 University Place, Glasgow G128TA, UK
| | - David P Taggart
- Department of Cardiovascular Surgery, University of Oxford, Headley Way, Oxford, Oxforshire OX39DU, UK; Department Cardiac Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford, Oxfordshire OX3 9DU, UK
| |
Collapse
|