1
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
2
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Krystal JH, Martínez-González KG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Cross-Species Convergence of Brain Transcriptomic and Epigenomic Findings in Posttraumatic Stress Disorder: A Systematic Review. Complex Psychiatry 2023; 9:100-118. [PMID: 37404872 PMCID: PMC10315001 DOI: 10.1159/000529536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/31/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a complex multifactorial disorder influenced by the interaction of genetic and environmental factors. Analyses of epigenomic and transcriptomic modifications may help to dissect the biological factors underlying the gene-environment interplay in PTSD. To date, most human PTSD epigenetics studies have used peripheral tissue, and these findings have complex and poorly understood relationships to brain alterations. Studies examining brain tissue may help characterize the brain-specific transcriptomic and epigenomic profiles of PTSD. In this review, we compiled and integrated brain-specific molecular findings of PTSD from humans and animals. Methods A systematic literature search according to the PRISMA criteria was performed to identify transcriptomic and epigenomic studies of PTSD, focusing on brain tissue from human postmortem samples or animal-stress paradigms. Results Gene- and pathway-level convergence analyses revealed PTSD-dysregulated genes and biological pathways across brain regions and species. A total of 243 genes converged across species, with 17 of them significantly enriched for PTSD. Chemical synaptic transmission and signaling by G-protein-coupled receptors were consistently enriched across omics and species. Discussion Our findings point out dysregulated genes highly replicated across PTSD studies in humans and animal models and suggest a potential role for the corticotropin-releasing hormone/orexin pathway in PTSD's pathophysiology. Further, we highlight current knowledge gaps and limitations and recommend future directions to address them.
Collapse
Affiliation(s)
- Diana Leandra Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila Tiemi Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
4
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:1107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6-10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| |
Collapse
|
5
|
Zhang J, Kaye AP, Wang J, Girgenti MJ. Transcriptomics of the depressed and PTSD brain. Neurobiol Stress 2021; 15:100408. [PMID: 34703849 PMCID: PMC8524242 DOI: 10.1016/j.ynstr.2021.100408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Stress is the response of an organism to demands for change, yet excessive or chronic stress contributes to nearly all psychiatric disorders. The advent of high-throughput transcriptomic methods such as single cell RNA sequencing poses new opportunities to understand the neurobiology of stress, yet substantial barriers to understanding stress remain. Stress adaptation is an organismal survival mechanism conserved across all organisms, yet there is an infinity of potential stressful experiences. Unraveling shared and separate transcriptional programs for adapting to stressful experience remains a challenge, despite methodological and analytic advances. Here we review the state of the field focusing on the technologies used to study the transcriptome for the stress neurobiologist, and also attempt to identify central questions about the heterogeneity of stress for those applying transcriptomic approaches. We further explore how postmortem transcriptome studies aided by preclinical animal models are converging on common molecular pathways for adaptation to aversive experience. Finally, we discuss approaches to integrate large genomic datasets with human neuroimaging and other datasets.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Computer Science, University of California- Irvine, Irvine, CA, USA
| | - Alfred P. Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Matthew J. Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, U.S. Department of Veterans Affairs, USA
| |
Collapse
|
6
|
Logue MW, Zhou Z, Morrison FG, Wolf EJ, Daskalakis NP, Chatzinakos C, Georgiadis F, Labadorf AT, Girgenti MJ, Young KA, Williamson DE, Zhao X, Grenier JG, Huber BR, Miller MW. Gene expression in the dorsolateral and ventromedial prefrontal cortices implicates immune-related gene networks in PTSD. Neurobiol Stress 2021; 15:100398. [PMID: 34646915 PMCID: PMC8498459 DOI: 10.1016/j.ynstr.2021.100398] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/17/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
Studies evaluating neuroimaging, genetically predicted gene expression, and pre-clinical genetic models of PTSD, have identified PTSD-related abnormalities in the prefrontal cortex (PFC) of the brain, particularly in dorsolateral and ventromedial PFC (dlPFC and vmPFC). In this study, RNA sequencing was used to examine gene expression in the dlPFC and vmPFC using tissue from the VA National PTSD Brain Bank in donors with histories of PTSD with or without depression (dlPFC n = 38, vmPFC n = 35), depression cases without PTSD (n = 32), and psychopathology-free controls (dlPFC n = 24, vmPFC n = 20). Analyses compared PTSD cases to controls. Follow-up analyses contrasted depression cases to controls. Twenty-one genes were differentially expressed in PTSD after strict multiple testing correction. PTSD-associated genes with roles in learning and memory (FOS, NR4A1), immune regulation (CFH, KPNA1) and myelination (MBP, MOBP, ERMN) were identified. PTSD-associated genes partially overlapped depression-associated genes. Co-expression network analyses identified PTSD-associated networks enriched for immune-related genes across the two brain regions. However, the immune-related genes and association patterns were distinct. The immune gene IL1B was significantly associated with PTSD in candidate-gene analysis and was an upstream regulator of PTSD-associated genes in both regions. There was evidence of replication of dlPFC associations in an independent cohort from a recent study, and a strong correlation between the dlPFC PTSD effect sizes for significant genes in the two studies (r = 0.66, p < 2.2 × 10−16). In conclusion, this study identified several novel PTSD-associated genes and brain region specific PTSD-associated immune-related networks.
Collapse
Affiliation(s)
- Mark W Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA.,Boston University School of Medicine, Biomedical Genetics, Boston, MA, 02118, USA.,Boston University School of Public Health, Department of Biostatistics, Boston, MA, 02118, USA
| | - Zhenwei Zhou
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, 02118, USA
| | - Filomene G Morrison
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| | - Erika J Wolf
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, 02215, USA.,McLean Hospital, Belmont, MA, 02478, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christos Chatzinakos
- Harvard Medical School, Department of Psychiatry, Boston, MA, 02215, USA.,McLean Hospital, Belmont, MA, 02478, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Foivos Georgiadis
- McLean Hospital, Belmont, MA, 02478, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Adam T Labadorf
- Bioinformatics Hub, Boston University, Boston, MA, 02118, USA.,Boston University School of Medicine, Department of Neurology, Boston, MA, 02118, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.,Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, 06516, USA.,TAMUCOM Department of Psychiatry and Behavioral Sciences, Bryan, TX, 77807, USA
| | - Keith A Young
- TAMUCOM Department of Psychiatry and Behavioral Sciences, Bryan, TX, 77807, USA.,VISN17 Center of Excellence for Research on Returning War Veterans at CTVHCS, Waco, TX, 76711, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27701, USA.,Durham VA Healthcare System, Durham, NC, 27705, USA
| | - Xiang Zhao
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| | - Jaclyn Garza Grenier
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Bertrand Russell Huber
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Neurology, Boston, MA, 02118, USA.,Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, 02130, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| |
Collapse
|